TeXAs INSTRUMENTS

Reference Guide for the TI-84 Plus CE Graphing Calculator

Catalog, Commands and Functions, Error Messages

Arithmetic Operations, Test Relations, and Symbols

To obtain the latest version of the documentation, go to education.ti.com/go/download.

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this product. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.
© 2006-2017 Texas Instruments Incorporated

Contents

Important Information ii
What's New 1
What's New in the TI-84 Plus CE Reference Guide: 1
Introduction 2
CATALOG, Strings, Hyperbolic Functions 3
What Is the CATALOG? 3
Browsing the TI-84 Plus CE Catalog 4
Using Catalog Help 6
Entering and Using Strings 8
Storing Strings to String Variables 9
String Functions and Instructions in the CATALOG 11
Hyperbolic Functions in the CATALOG 16
Commands and Functions Listing 18
Alpha CATALOG Listing 20
A 20
B 22
C 23
D 28
E 32
F 34
G 37
H 41
I. 42
L 47
M 51
N 53
0 57
P 57
Q 64
R 64
S 69
T 79
U 83
V 84
W 85
X 86
Z 86
Arithmetic Operations, Test Relations, and Symbols 91
Error Messages 100
General Information 106
Texas Instruments Support and Service 106
Service and Warranty Information 106

What's New

What's New in the TI-84 Plus CE Reference Guide:

All items listed are new or updated entries in the Reference Guide for the TI-84 Plus CE Graphing Calculator.

Piecewise

- New piecewise function to support entry of functions as they are seen in textbook. This command can be found in math MATH B:piecewise(.

NORMAL FLOAT AUTO REAL Radian mp	1
Plot1 Plot2 Plot3 $\begin{aligned} & \mathbf{N Y}_{1}=\left\{\begin{array}{l} X^{2}-1 ; X \leq 2 \\ X+1 ; X>2 \end{array}\right. \\ & V_{2}= \\ & \mathbf{N Y} Y_{3}= \\ & \text { VY }_{4}= \\ & \mathbf{N Y}_{5}= \\ & \mathbf{N Y}= \\ & \mathbf{N Y}= \end{aligned}$	

- New CONDITIONS submenu in 2nd [test] supports faster entry of intervals for piecewise functions.
- Available for use in all function graphing modes and all split screen modes.

Introduction

In this Reference Guide you will find the following information:

- CATALOG, Strings, Hyperbolic Functions - Includes instructions on browsing, using, entering strings, and other functions in the CATALOG.
- Commands and Functions Listing - Includes an alphabetical listing of all CATALOG items, referencing:
- Function or Instruction/Arguments
- Results
- Key or Keys/Menu or Screen/Item
- Arithmetic Operations, Test Relations, and Symbols - Items whose names are not alphabetic (such as + , !, and $>$).
- Error Messages - Includes a listing of error types with possible causes and suggested remedies.

CATALOG, Strings, Hyperbolic Functions

What Is the CATALOG?

The CATALOG is an alphabetical list of all functions and instructions on the TI-84 Plus CE. You also can access each CATALOG item from a menu or the keyboard, except:

- The six string functions
- The six hyperbolic functions
- The solve(instruction without the equation solver editor
- The inferential stat functions without the inferential stat editors

Note: The only CATALOG programming commands you can execute from the home screen are GetCalc(, Get(, and Send(.

Browsing the TI-84 Plus CE Catalog

Selecting an Item from the CATALOG

To browse and select a CATALOG item, follow these steps.

1. Press [2nd [catalog]to display the CATALOG.
Mormal float auto real radian mp al

CATALOG

- abs $($
and
angle(
ANOVA(
Ans
Archive
Asm(
AsmComp (
Asm84CEPrgm
The in the first column is the selection cursor.

2. Press \square or to scroll the CATALOG until the selection cursor points to the item you want.

- To jump to the first item beginning with a particular letter, press that letter; alpha-lock is on.
- Items that begin with a number are in alphabetical order according to the first letter after the number. For example, 2-PropzTest(is among the items that begin with the letter \mathbf{P}.
- Functions that appear as symbols, such as,$+{ }^{-1}$, <, and $\sqrt{ }$ (, follow the last item that begins with \mathbf{Z}. To jump to the first symbol, !, press [θ].

3. Press enter to paste the item to the current screen.

Note:

- From the top of the CATALOG menu, press Δ to move to the bottom. From the bottom, press to move to the top.
- When your TI-84 Plus CE is in MathPrint ${ }^{\text {TM }}$ mode, many functions will paste the MathPrint ${ }^{\text {TM }}$ template on the home screen. For example, abs(pastes the absolute value template on the home screen instead of abs(.

MathPrint ${ }^{T M}$

NORMAL FLOAT GUTO REAL RADIAN CL
abs ${ }^{(1}$

Classic

Using Catalog Help

Displaying Catalog Help

You can display Catalog Help arguments for functions in two ways:

- Using an alpha/numeric function listing in the catalog (e.g, 2nd [catalog]).
- Using the functions listed in certain menus (e.g, math).

Catalog Help lists the valid arguments for the function under the edit line. Arguments in brackets are optional.

1. Display the menu that contains the function.
2. Use \triangle and/or \square to move the cursor to the function.
3. Press \square to display arguments for the function. The cursor is on the function edit line.

Note:

- The catalog (2nd [catalog]) is displayed in alphabetical order. When you display the catalog, the alpha-lock is turned on. Press the first letter of the function name to skip function names that come before it alphabetically. Use Δ and/or ∇ to move the cursor to the function.
- Not all catalog functions have associated arguments. If the function does not require an argument, Catalog Help displays the message "No arguments required for this item."

Catalog Help Commands

- Select MORE (if available) to display more arguments for the function.
Normal float futo real radifin Mp
dime C CATRLOG HELP
NORMAL FLOAT AUTO REAL RADIAN MP
CATALOG HELP
Disp \quad -
(listname)
[valueA, valueB, valueC,..., value n]
(matrixname)
no arguments
MORE \quad PRASTEI ESC \quad |PRSTE] ESC
- Use shortcut menus alpha [f1] through [f4] through for argument values if available.

- Enter your argument values on the function edit line, and then select PASTE to paste the function and the argument values you entered.

Note: You can paste to most cursor locations.

Cormal float auto real radian MP
CATRLOG HELP
LinReg $(a+b x) L_{1}, L_{2}, Y_{3} \square$

[Xlistname, Ylistname
,frealist, regequ]

- Select ESC to exit the Catalog Help screen.

Entering and Using Strings

What Is a String?

A string is a sequence of characters that you enclose within quotation marks. On the TI-84 Plus CE, a string has two primary applications.

- It defines text to be displayed in a program.
- It accepts input from the keyboard in a program.

Characters are the units that you combine to form a string.

- Each number, letter, and space counts as one character.
- Each instruction or function name, such as $\sin ($ or $\cos ($, counts as one character; the TI-84 Plus CE interprets each instruction or function name as one character.

Entering a String

To enter a string on a blank line on the home screen or in a program, follow these steps.

1. Press alpha ["] to indicate the beginning of the string.
2. Enter the characters that comprise the string.

- Use any combination of numbers, letters, function names, or instruction names to create the string.
- To enter a blank space, press alpha [[ـ].
- To enter several alpha characters in a row, press alpha [A-lock] to activate alphalock.

3. Press alpha ["] to indicate the end of the string.
"string"
4. Press enter. On the home screen, the string is displayed on the next line without quotations. An ellipsis (...) indicates that the string continues beyond the screen. To scroll to see the entire string, press \square and \square.

Note: A string must be enclosed in quotation marks. The quotation marks do not count as string characters.

Storing Strings to String Variables

String Variables

The TI-84 Plus CE, has 10 variables to which you can store strings. You can use string variables with string functions and instructions.

To display the VARS STRING menu, follow these steps.

1. Press vars to display the VARS menu. Move the cursor to 7:String.

MORMAL FLOAT
VUTO REAL RADIAN MP
VARS Y-VARS COLOR
1:Window...
2:Zoom...
3:GDB...
4:Picture \& Background...
5:Statistics...
6:Table...
7:String...

2. Press enter to display the STRING secondary menu.
```
NORMAL FLOAT GUTO REAL RADIAN MP \
```

STRING
1:Str1
2:Str2
3:Str3
4:Str4
5:Str5
6:Str6
7:Str7
8:Str8
$9 \downarrow$ Str9

Storing a String to a String Variable

To store a string to a string variable, follow these steps.

1. Press alpha ["], enter the string, and press alpha ["].
2. Press sto \rightarrow.
3. Press vars $\mathbf{7}$ to display the VARS STRING menu.
4. Select the string variable (from Str1 to Str9, or Str0) to which you want to store the string.

STRING

1:Str1
2:Str2
3:Str3
4:Str4
5:Str5
6:Str6
7:Str7
8:Str8
9 \downarrow Str9
The string variable is pasted to the current cursor location, next to the store symbol (\rightarrow).
5. Press enter to store the string to the string variable. On the home screen, the stored string is displayed on the next line without quotation marks.

Displaying the Contents of a String Variable

To display the contents of a string variable on the home screen, select the string variable from the VARS STRING menu, and then press enter. The string is displayed.

NORMAL FLOAT AUTO REAL RADIAN MP

Str2

HELCㄴ
\square

String Functions and Instructions in the CATALOG

Displaying String Functions and Instructions in the CATALOG

String functions and instructions are available only from the CATALOG. The table below lists the string functions and instructions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

CATALOG

Equ String(Converts an equation to a string.
\ldots	Converts a string to an expression.
expr(Returns a character's place number.
\ldots	
inString \ldots	Returns a string's character length.
length(Converts a string to an equation.
\ldots	Returns a string subset as a string.

Concatenation

To concatenate two or more strings, follow these steps.

1. Enter string1, which can be a string or string name.
2. Press \dagger.
3. Enter string2, which can be a string or string name. If necessary, press \dagger and enter string3, and so on.
string1+string2+string3...
4. Press enter to display the strings as a single string.

Selecting a String Function from the CATALOG

To select a string function or instruction and paste it to the current screen, follow the steps for selecting an item from the CATALOG.

Equistring(

Equistring(converts an equation to a string. The equation must be store in a VARS Y-VARS variable. Y n contains the equation. Str n (from Str1 to Str9, or Str0) is the string variable to which you want the equation to be stored.

Equ>String($\mathbf{Y} n$, Str n)

expr(
expr(converts the character string contained in string to an expression and executes the expression. string can be a string or a string variable.
expr(string)

normal float auto real radian mp П	Normal float muto real radian mp П
$2 \rightarrow X$	$\left.\operatorname{expr}\left(" 1+2+x^{2}\right)^{\prime}\right)$
$\because 5 \times \because \rightarrow S t r 1$ $5 \times$	7.
expr $\operatorname{Str1}) \rightarrow$ A	
$10 .$	
..................................... 10.	

inString(

inString(returns the character position in string of the first character of substring. string can be a string or a string variable. start is an optional character position at which to start the search; the default is 1 .
inString(string,substring[,start])

Note: If string does not contain substring, or start is greater than the length of string, inString(returns 0.

length(

length(returns the number of characters in string. string can be a string or string variable.

Note: An instruction or function name, such as $\boldsymbol{\operatorname { s i n }}$ (or $\boldsymbol{\operatorname { c o s }}$ (, counts as one character.
length(string)

String) Equ(

String) Equ(converts string into an equation and stores the equation to Yn. string can be a string or string variable. String)Equ(is the inverse of EqulString(.

String> Equ(string, $\mathbf{Y} n$)

sub(
sub(returns a string that is a subset of an existing string. string can be a string or a string variable. begin is the position number of the first character of the subset. length is the number of characters in the subset.
sub(string,begin,length)
normal float huto real radian mp П
"ABCDEFG" \rightarrow Str5
ABCDEFG
sub(Str5,4,2)
DE

Entering a Function to Graph during Program Execution

In a program, you can enter a function to graph during program execution using these commands.
Mormal float ruto real radian mp П

PROGRAM: INPUT
: Input "ENTRY=",Str3
:StringlEqu(Str3, Y_{3})
: DispGraph
:
tormal float auto real radian mp П
pr9m INPUT
ENTRY=3X

Note: When you execute this program, enter a function to store to Y 3 at the ENTRY= prompt.

Hyperbolic Functions in the CATALOG

Hyperbolic Functions

The hyperbolic functions are available only from the CATALOG. The table below lists the hyperbolic functions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

CATALOG	
\ldots	
$\cosh ($	Hyperbolic cosine
$\cosh ^{-1}($	Hyperbolic arccosine
\ldots	
$\sinh ($	Hyperbolic sine
$\sinh ^{-1}($	Hyperbolic arcsine
\ldots	
$\tanh ^{\tanh ^{-1}(}$	Hyperbolic tangent
Hyperbolic arctangent	

$\sinh (, \cosh (, \tanh ($
$\sinh (, \cosh ($, and $\tanh ($ are the hyperbolic functions. Each is valid for real numbers, expressions, and lists.

```
\(\sinh (\) value \()\)
```

\cosh (value)
$\boldsymbol{t a n h}$ (value)
Mormal float ruto real radian mp П
sinh(.5)

coshi ($\{.25, .5,1\})$
โ1.0314131.1.127625965 . 1.1
$\sinh ^{-1}\left(, \cosh ^{-1}\left(, \tanh ^{-1}(\right.\right.$
$\sinh ^{-1}$ (is the hyperbolic arcsine function. $\cosh ^{-1}$ (is the hyperbolic arccosine function.
$\boldsymbol{t a n h}^{-1}$ (is the hyperbolic arctangent function. Each is valid for real numbers,
expressions, and lists.
$\sinh ^{-1}$ (value)
$\cosh ^{-1}$ (value)
$\tanh ^{-1}$ (value)

Commands and Functions Listing

The purpose of this table of information is to provide a short description with syntax of command arguments as appropriate and menu locations for each command or function in the Catalog listing in the calculator.

This table is useful for executing commands when using the calculator or creating TIBasic programs.

Items whose names are not alphabetic (such as + , !, and $>$) are listed in the Arithmetic Operations, Test Relations, and Symbols section. Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be the default value of 0 .

From the CATALOG, you can paste any function or command to the home screen or to a command line in the program editor.

The same syntax information for function and command arguments below is available on the calculator and also in the TI Connect ${ }^{\text {TM }}$ CE Program Editor.

- On the calculator, pressing [+] when a function or command is highlighted in the menu listing will display the Catalog Help syntax editor to assist your entries.
- Using TI Connect ${ }^{\text {TM }}$ CE Program Editor, the catalog listing also displays the syntax of the arguments for functions and commands.

Note that some functions and commands are only valid when executed in a TI-Basic program and not from the home screen.

The items in this table appear in the same order as they appear in the CATALOG (2nd [catalog].)

In the table below, the $\boldsymbol{\dagger}$ symbol indicates either keystrokes or certain commands which are only available in the Program Editor mode on the calculator. Press prgm and select to EDIT an existing program or NEW to start a new program to set the calculator in the Program Edit mode.

Some arguments are optional. Optional arguments will be indicated within [] in the syntax help given in the table below. [] are not symbols on the calculator and are not to be typed in. They are used here only to indicate an optional argument.

On the calculator, functions and commands paste as "tokens." This means they paste as one character and not as individual letters, symbols and spaces. Do not attempt to type in any function or command on the calculator. Just paste the token from menu locations. Watch the cursor jump over tokens as you edit to get a better understanding of tokens.

In TI Connect ${ }^{\text {TM }}$ CE Program Editor, you can "feel" the same experience of pasting tokens when using the Catalog tree provided in that editor. You also can type in the functions and commands if you know the correct format and syntax. TI Connect ${ }^{\text {TM }}$ CE "tokenizes" the functions and commands when you send the program to the calculator. However, you must type in the functions and commands exactly as the tokens. Note that some commands will have spaces as part of the token which you might not see. For example, Pause command as a token has a space at the end. Once you send the
program to the calculator, you can run the program and if there are any syntax errors, you can fix the issues on either the calculator or in TI Connect ${ }^{T M}$ CE Program Editor.

CTL I/O \begin{tabular}{cl}
COLOR

Color Numbers \& \multicolumn{1}{c}{| EXEC |
| :---: |}

10 \& BLUE

11 \& RED

12 \& BLACK

13 \& MAGENTA

14 \& GREEN

15 \& ORANGE

16 \& BROWN

17 \& NAVY

18 \& LTBLUE

19 \& YELLOW

20 \& WHITE

21 \& LTGRAY

22 \& MEDGRAY

23 \& GRAY

24 \& DARKGRAY
\end{tabular}

You can also choose a name in the vars menu (COLOR sub-menu).

Mormal float muto real radian mp	Hokhal float muto real radian mp \square
CTL I O COLOR EXEC	CTL I/O COLOR EXEC
1: BLUE	7¢ BROWN
2: RED	8: NAVY
3: BLACK	9: LTBLUE
4: MRGENTA	0: YELLOW
5: GREEN	A: WHITE
6: ORFINGE	B: LTGRAY
7: BROWN	C: MEDGRAY
8: NAVY	D: GRAY
$9 \downarrow$ LTBLUE	E! DARKGRAY

GraphColor(function\#,color\#)

For example, GraphColor $(\mathbf{2}, \mathbf{4})$ or $\operatorname{GraphColor}(\mathbf{2 , M A G E N T A)}$.

Alpha CATALOG Listing

A

abs()

abs(value)	MATH
Returns the absolute value of a real number, expression, list, or matrix.	NUM
	1:abs(

abs()

abs(complex value)	
Returns the magnitude of a complex number or list.	CMPLX
	5:abs(

and	
value A and value B 2nd [TEST] Returns 1 (true) when both value A and valueB are true. Otherwise, LOGIC return is 0 (false). 1:and	

value A and valueB can be real numbers, expressions, or lists.
TI Connect ${ }^{\text {TM }}$ Program Editor Tip:
Notice the token is "_and_" where "_" is a space.

angle()	
angle(value)	
Returns the polar angle of a complex number or list of complex numbers.	4:angle(

ANOVA()

ANOVA(list 1, list $2[$, list $3, \ldots$, , ist 20$]$]
Performs a one-way analysis of variance for comparing the means of two to 20 populations.
H:ANOVTS

Ans
Ans 2nd [ANS]

Returns the last answer.

Archive

Archive variables
Moves the specified variable from RAM to the user data archive 5:Archive memory.

Asm()	2nd
Asm(assemblyprgmname)	
Executes an assembly language program.	[CATALOG]
	Asm(

AsmComp()
AsmComp(prgmASM1, prgmASM2)
2nd
[CATALOG]
Compiles an assembly language program written in ASCII and stores the hex version.

Asm84CEPrgm

Asm84CEPrgm
Must be used as the first line of an assembly language program.

augment()

augment(matrix A,matrix B)

2nd [MATRIX]
MATH

Returns a matrix, which is matrixB appended to matrixA as new columns.
augment()
augment(listA,list B)
Returns a list, which is list B concatenated to the end of $l i s t A$.

AUTO Answer	MODE
AUTO	Answers:
Displays answers in a similar format as the input.	AUTO

AxesOff	
AxesOff	+ 2nd

AxesOn

AxesOn[color\#]

+ 2nd
[FORMAT] AxesOn axes to be specified.

Color\#: 10-24 or color name pasted from [vars] COLOR..

$\mathbf{a + b} i$	
$\mathbf{a + b} i$	
Sets the mode to rectangular complex number format (a+bi).	+MODE $\mathbf{a + b} i$

B

BackgroundOff

BackgroundOff
Turns off background image in the graph area.

$$
\begin{aligned}
& \text { + 2nd [DRAW] } \\
& \text { BACKGROUND } \\
& \text { 2:BackgroundOff: }
\end{aligned}
$$

BackgroundOn
BackgroundOn n
Displays a menu the Background Image Var n (Image\#n) specified in the graph area.

+ 2nd [DRAW]
BACKGROUND
1:BackgroundOn

bal(
bal(npmt[,roundvalue $]$)	APPS
Computes the balance at $n p m t$ for an amortization schedule using	1:Finance
stored values for PV,I\%, and PMT and rounds the computation to	CALC
roundvalue.	9:bal(

binomcdf(2nd [DISTR]
binomcdf(numtrials, $p[, x]$)	DISTR
Computes a cumulative probability at x for the discrete binomial distribution with the specified numtrials and probability p of success on each trial.	B:binomcdf(

binompdf(
binompdf(numtrials, $p[, x]$)	2nd [DISTR]
Computes a probability at x for the discrete binomial distribution with the	DISTR
specified numtrials and probability p of success on each trial.	A:binompdf(

BorderColor	+ 2nd
BorderColor[color\#]	[FORMAT]
$\left.\begin{array}{lr}\text { Turns on a border color surrounding the graph area with the specified } & \text { BorderColor } \\ \text { color. Color\#:1-4. }\end{array}\right]$	

Boxplot	+ 2nd
Boxplot Plot\#(type,Xlist,[,freqlist, color\#])	
Defines Plot\# (1, 2, or 3) of type	[stat plot]
	TYPE

C

checkTmr(checkTmr(starttime)

Returns the number of seconds since you used startTmr to start the 2nd [CATALOG] checkTmr(

$\chi^{2} \mathrm{cdf}($

$\chi^{2} \operatorname{cdf}($ lowerbound,upperbound, $d f)$
Computes the χ^{2} distribution probability between lowerbound and
8: $\chi^{2} \mathrm{cdf}($ upperbound for the specified degrees of freedom $d f$.

$\chi^{2} \mathrm{pdf}($	
$\chi^{2} \mathbf{p d f}(x, d f)$	2nd [DISTR]
Computes the probability density function (pdf) for the χ^{2} distribution at	$\text { 7: } \chi^{\text {DISTR }} \text { pdf(}$

$\chi^{2-T e s t(}$	
$\chi^{2-T e s t(o b s e r v e d m a t r i x, ~ e x p e c t e d m a t r i x ~}$	+ STAT
[,drawflag,color\#])	TESTS
Performs a chi-square test. drawflag=1 draws results; drawflag=0 calculates results.	C: $\chi^{2-\text { Test }}$
Color\#: 10-24 or color name pasted from [vars] COLOR.	

χ^{2} GOF

χ^{2} GOF-Test(observedlist,expectedlist,df
[,drawflag,color\#])
Performs a test to confirm that sample data is from a population that conforms to a specified distribution.

Color\#: 10-24 or color name pasted from [vars] COLOR.

Circle(
 Circle(X,Y,radius[,color\#,linestyle\#])

2nd [DRAW]
DRAW
9:Circle(

Color\#: 10-24 or color name pasted from [vars] COLOR.
linestyle\#: 1-2.

CLASSIC	
CLASSIC	
Displays inputs and outputs on a single line, such as $1 / 2+3 / 4$.	
Clear Entries	2nd [MEM]
Clear Entries	MEMORY
Clears the contents of the Last Entry storage area.	3:Clear
	Entries

ClockOff

ClockOff
Turns off the clock display in the mode screen.

ClockOn	
ClockOn	2nd
Turns on the clock display in the mode screen.	
[CATALOG]	
ClockOn	

Clrallists

ClrAllLists

2nd [MEM] MEMORY
Sets to $\mathbf{0}$ the dimension of all lists in memory. 4:CIrAllLists

ClrDraw	2nd [DRAW]
ClrDraw	DRAW
Clears all drawn elements from a graph or drawing.	1:CIrDraw

ClrHome	
ClrHome	†RGM
Clears the home screen.	8:CIrHome

ClrList	
CIrList listname 1[,listname2, ..., listname n]	
Sets the dimension of one or more listnames to 0.	ESTAT]
	4:CIrList

CIrTable	
CIrTable	+ PRGM
Clears all values from the table.	I/O

9:CIrTable

conj(
conj(value)	MATH
Returns the complex conjugate of a complex number or list of complex	CMPLX
numbers.	1:conj(

CoordOff
CoordOff

+ 2nd [FORMAT] CoordOff

CoordOn	
CoordOn	† 2nd
Turns on cursor coordinate value display.	[FORMAT]
	CoordOn

$\cos ($
cos(value)
COS
Returns cosine of a real number, expression, or list.
$\cos ^{-1}($
$\cos ^{-1}$ (value)

Returns arccosine of a real number, expression, or list.
\cosh (
$\cosh ($ value)
2nd

```
\mp@subsup{\operatorname{cosh}}{}{-1}
cosh-1 (value)
```

[CATALOG]
$\cosh ^{-1}($

CubicReg

CubicReg [Xlistname,Ylistname,freqlist,regequ]
Fits a cubic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.

cumSum(2nd [[IST]
cumSum (list)	OPS
Returns a list of the cumulative sums of the elements in $l i s t$, starting with the first element.	6:cumSum(

cumSum(
cumSum(matrix)
2nd [MATRIX]
MATH
Returns a matrix of the cumulative sums of matrix elements. Each element in the returned matrix is a cumulative sum of a matrix column 0:cumSum(from top to bottom.

dayOfWk(

dayOfWk(year,month,day)
2nd [CATALOG] dayOfWk(1:Sunday 2:Monday 3:Tuesday...

dbd(

dbd(date1,date2) APPS

Calculates the number of days between date 1 and date 2 using the actual-day-count method.

DEC Answers	
DEC	MODE
Displays answers as integers or decimal numbers.	Answers:
	DEC

Dec	[MATH]
value Dec	MATH
Displays a real or complex number, expression, list, or matrix in decimal format.	$\mathbf{2 : ~ D e c ~}$

Degree

Degree

+ MODE
Sets degree angle mode.
Degree

DelVar

DelVar variable

+ PRGM
CTL
G:DelVar

DependAsk	+ 2nd [TBLSET]
DependAsk	Depend: Ask

DependAuto

$\operatorname{det}($	2nd]
$\operatorname{det}($ matrix)	[MATRIX]
Returns determinant of matrix.	MATH
	1:det(

DetectAsymOff

DetectAsymOff

Turns off checks for rational function asymptotes when graphing.

+ 2nd [FORMAT]
DetectAsymOff Impacts graph speed. Does not perform extra calculations to detect asymptotes pixel to pixel while graphing. Pixels will connect across the screen even across an asymptote.

DetectAsymOn

DetectAsymOn

+ 2nd [FORMAT]
DetectAsymOn

Turns on checks for rational function asymptotes when graphing. Impacts graph speed. Performs more calculations and will not connect pixels across an asymptote on a graph.

DiagnosticOff

DiagnosticOff
Sets diagnostics-off mode; $\mathbf{r}, \mathbf{r}^{2}$, and \mathbf{R}^{2} are not displayed as regression model results.

2nd [CATALOG]
DiagnosticOff

DiagnosticOn

DiagnosticOn
2nd [CATALOG]
Sets diagnostics-on mode; $\mathbf{r}, \mathbf{r}^{2}$, and \mathbf{R}^{2} are displayed as regression model results.

$\operatorname{dim}($	
$\operatorname{dim}(l i s t n a m e)$	2nd [LIST]
Returns the dimension of listname.	OPS
	3:dim(

$\operatorname{dim}($	2nd
dim (matrixname)	[MATRIX]
Returns the dimension of matrixname as a list.	MATH
	3:dim(

$\operatorname{dim}($	
length $\rightarrow \operatorname{dim}$ (listname)	2nd [LIST]
Assigns a new dimension (length) to a new or existing listname.	OPS
	3:dim(

$\operatorname{dim}($	
$\{$ rows,columns $\} \rightarrow \operatorname{dim}($ matrixname $)$	2nd [MATRIX]
Assigns new dimensions to a new or existing matrixname.	MATH
	3:dim(

Disp	+ PRGM
Disp	I/O
Displays the home screen.	3:Disp

Disp	
Disp [value A, valueB,value C, \ldots, value n] †RGM Displays each value. I/O 3:Disp	

DispGraph

\author{

+ PRGM
 I/O
 4:DispGraph
}

DispTable

DispTable	+ PRGM
Iisplays the table.	5:DispTable

DMS	2nd
value DMS	
Displays value in DMS format.	[ANGLE]
	ANGLE
	$4:>$ DMS

Dot-Thick

Dot-Thick
† MODE
Sets dot plotting mode; resets all $\mathrm{Y}=$ editor graph-style settings to Dot-Dot-Thick Thick.

Dot-Thin

Dot-Thin

† MODE Dot-Thin
Sets dot plotting mode; resets all $\mathrm{Y}=$ =editor graph-style settings to DotThin.

DrawF

DrawFexpression[,color\#]
2nd [DRAW]
DRAW
6:DrawF

Color\#:10-24 or color name pasted from [vars] COLOR.

Drawinv

Drawlnvexpression[,color\#]
Draws the inverse of expression by plotting \mathbf{X} values on the \mathbf{y}-axis and \mathbf{Y} values on the x-axis with specified
Color\#: 10-24 or color name pasted from [vars] COLOR.

DS<1	
DS<(variable,value):commandA:commands	+ PRGM
Decrements variable by 1 ; skips command A if variable < value.	CTL

E

e	2nd [e]
e	
Returns decimal approximation of the constant \mathbf{e}.	

```
e^(
\mp@subsup{\mathbf{^^}}{}{\wedge}(\mathrm{ power ) [2nd] [ex}]
Returns e raised to power.
```

$\mathbf{e}^{\wedge}($	
$\mathbf{e}^{\wedge}($ list $)$	2nd [e^{x}]

Returns a list of e raised to a list of powers.

E	
Exponent: valueE exponent Returns value times 10 to the exponent.	
E	
Exponent:	2nd [EE]
listEexponent	
Returns list elements times 10 to the exponent.	

Exponent:
matrixEexponent
Returns matrix elements times 10 to the exponent.

-Eff(

-Eff(nominal rate, compounding periods)
Computes the effective interest rate.
CALC
C: $>$ Eff(

Else

Else
See If:Then:Else

End	
End	+ PRGM
Identifies end of For(, If-Then-Else, Repeat, or While loop.	CTL

Eng	
Eng	† MODE
Sets engineering display mode.	Eng

Equ>String(

Equ String $^{(\mathbf{Y}=}=$ var,Str n)
Converts the contents of a $\mathbf{Y}=$ var to a string and stores it in $\mathbf{S t r} n$

eval(

eval(expression)

+ PRGM
1/0
Returns an evaluated expression as a string with 8 significant digits. The expression must be real.

eval(TI-Innovator Hub
eval(expression)	+ PRGM
Returns an evaluated expression as a string with 8 significant digits. The	HUB
expression must simplify to a real expression.	6:eval(

ExecLib

ExecLib

+ PRGM
CTL K:ExecLib
expr(
expr(string)
+ PRGM 1/0
Converts the character string contained in string to an expression and expr(executes the expression. string can be a string or a string variable.

ExpReg	
ExpReg [Xlistname,Ylistname,freqlist,regequ]	
Fits an exponential regression model to Xlistname and Ylistname with	CALC
frequency freqlist, and stores the regression equation to regequ.	0:ExpReg

ExprOff	
ExprOff	+ 2nd]
Turns off the expression display during TRACE.	
[FORMAT]	
ExprOff	

ExprOn

ExprOn
+2 2nd [FORMAT] ExprOn

F

Fcdf(

Fcdflowerbound,upperbound,numerator

-F 1 D

ALPHA [F1]
4: F 1 D

Converts an answer from a fraction to a decimal or from a decimal to a fraction. Fraction and or decimal may be an approximation.

Fill(
Fill(value,matrixname)	
Stores value to each element in matrixname.	2nd
	[MATRIX]
	MATH
	4:Fill

Fill(
Fill(value,listname)
Stores value to each element in listname.

Fix	
Fix \#	+MODE
Sets fixed-decimal mode for \# of decimal places.	$\mathbf{0 1 2 3 4 5 6 7 8 9}$
	(select one)

Float

Float	+ MODE
Sets floating decimal mode.	Float

fMax(
fMax(expression, variable,lower, upper[,tolerance])	
Returns the value of variable where the local maximum of expression	
occurs, between lower and upper, with specified tolerance.	7:fMax(

fMin(
fMin(expression, variable,lower,upper[,tolerance])	MATH
Returns the value of variable where the local minimum of expression	MATH
occurs, between lower and upper, with specified tolerance.	6:Min(

FnOff	
FnOff [function\#,function\#,...,function $n]$	VARS
Deselects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions.	$\mathbf{Y - V A R S}$
	4:On/Off
	2:FnOff

FnOn	VARS
FnOn [function\#,function\#,...,function $n]$	Y-VARS 4:On/Off 1:FnOn
Selects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions.	
For(
:For(variable,begin,end	
[,increment]):commands:End:commands	PRGM
	4:FTL

For(

Executes commands through End, incrementing variable from begin
by increment until variable>end.

fPart(
fPart(value)	
Returns the fractional part or parts of a real or complex number, expression, list, or matrix.	NUM
4:fPart(

Fpdf(

Fpdf(x,numerator $d f$,denominator $d f$)
Computes the F distribution probability between lowerbound and upperbound for the specified numerator $d f$ (degrees of freedom) 9: $\mathbf{F}_{\text {pdf }}$ (and denominator $d f$.

-Frac

value Frac	MATH
Displays a real or complex number, expression, list, or matrix as a fraction MATH simplified to its simplest terms. 1: Frac	

Full	
Full	+ MODE
Sets full screen mode.	Full

Func	
Func	+ MODE]
Sets function graphing mode.	Func

G

GarbageCollect	2nd [CATALOG]
GarbageCollect	GarbageCollect
Displays the garbage collection menu to allow cleanup of unused	

Returns the greatest common divisor of value A and value B, which can NUM be real numbers or lists.

geometcdf(

geometcdf (p, x)
Computes a cumulative probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the F:geometcdf(specified probability of success p.

geometpdf(

geometpdf(p, x)
2nd [DISTR] DISTR
Computes a probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p.

Get(+ PRGM
Get(variable)	I/O
Retrieves a value from a connected TI-Innovatorm data to a variable on the receiving CE calculator.	A:Get(

Note: See also Send(and eval(

Get(Ti-Innovator ${ }^{\text {™ }}$ Hub
Get(variable	+ PRGM
Retrieves a value from a connected TI-Innovator ${ }^{T M} \mathrm{Hub}$ and stores the data to a variable on the receiving CE calculator.	HUB
Note: See also Send and eval(5:Get

GetCalc(

CE.)

getDate

getDate
2nd [CATALOG]
getDate
Returns a list giving the date according to the current value of the clock. The list is in \{year,month,day\} format.

getDtFmt

getDtFmt
2nd
Returns an integer representing the date format that is currently set on the [CATALOG] device.
$1=M / D / Y$
$2=D / M / Y$
$3=Y / M / D$

getDtStr(

getDtStr(integer)
2nd
[CATALOG]
Returns a string of the current date in the format specified by integer, where:
$1=M / D / Y$
$2=D / M / Y$
$3=Y / M / D$

getTime

getTime

Returns a list giving the time according to the current value of the clock. getTime The list is in $\{$ hour, minute,second $\}$ format. The time is returned in the 24 hour format.

getTmFmt

getTmFmt
Returns an integer representing the clock time format that is currently set on the device.
$12=12$ hour format
$24=24$ hour format

getTmStr(

getTmStr(integer)
Returns a string of the current clock time in the format specified by
$12=12$ hour format
$24=24$ hour format
getKey
getKey

+ PRGM
I/O
Returns the key code for the current keystroke, or $\mathbf{0}$, if no key is pressed.

Goto	
Gotolabel	† PRGM
Transfers control to label.	CTL
	$0: G o t o$

GraphColor(
GraphColor(function\#,color\#)	+ PRGM
Sets the color for function\#.	H:GraphColor(
Color\#: $10-24$ or color name pasted from [vars] CoLOR.	

GraphStyle(
GraphStyle(function\#,graphstyle\#)	+ PRGM
Sets a graphstyle for function\#.	CTL
	H:GraphStyle(

GridDot	
GridDot [color\#]	+2nd]
Turns on grid dots in the graph area in the specified color.	[FORMAT]
Color\#: $10-24$ or color name pasted from [vars] color.	GridDot

GridLine	
GridLine [color\#]	+2nd]
	[FORMAT]
Turns on grid lines in the graph area in the specified color.	GridLine
Color\#: $10-24$ or color name pasted from [vars] color.	

GridOff	
GridOff	2nd [FORMAT]
Turns off grid format.	GridOff

G-T	
G-T	† MODE
Sets graph-table vertical split-screen mode.	GRAPH-
	TABLE

H
Histogram
Histogram Plot\#(type,Xlist,[ffreqlist,color\#])
Used as the "type" argument in the command
[stat plot] $]$
Histogram
Where \# gives Plot1, Plot2 or Plot3. TYPE

Horiz	+ MODE
Horiz	Horiz
Sets horizontal split-screen mode.	

Horizontal

Horizontal y [,color\#,linestyle\#]
2nd [DRAW] DRAW
Draws a horizontal line at y in a specified
Color\#: 10-24 or color name pasted from [vars] COLOR.
line style \#: 1-4.
I

\boldsymbol{i}	
\boldsymbol{i}	[2nd $[i]$
Returns the complex number i.	

identity(
identity(dimension)	2nd [MATRIX]
Returns the identity matrix of dimension rows x dimension columns.	MATH
	5: identity(

If	
If condition:commandA:commands	+ PRGM
If condition $=0$ (false), skips command A	CTL
	$1:$ If

```
If
Then
    End
If:conditionThen:commandsEnd:commands
    + PRGM
    Executes commands from Then to End if condition = 1 (true).
        CTL
    2:Then
```

If
Then
Else
End

If:

conditionThen:commandsElse:commandsEnd:commands CTL 3:Else
Executes commands from Then to Else if condition = 1 (true); from
Else to End if condition $=0$ (false).

imag(MATH
imag(value)	CMPLX
Returns the imaginary (non-real) part of a complex number or list of	3:imag(
complex numbers.	

inBinom(
inBinom(area, trial, p)	2nd [DISTR]
The inverse binomial cumulative distribution function results in the minimum number of successes, such that the cumulative probability for that minimum number of successes \geq the given cumulative probability	DISTR
(area). If more information is needed, also find the binomcdf for the	
result from invBinom(as shown below for a full a analysis.	C:invBinom(
Details:	

Assume the toss of a fair coin 30 times. What is the minimum number of heads you must observe such that the cumulative probability for that number of observed heads is at least 0.95 ?

The results on the screen first show that the minimum number of successes to obtain at least the given cumulative probability of 0.95 is 19. Next, the cumulative probability for up to 19 is computed using binomcdf(and is approximately 0.9506314271 which meets the criteria of $0.9506314271 \geq 0.95$

MORMaL FLOAT AUTO REAL RADIAN MP
invBinom(.95,30,.5)
binomcdf(30,.5,19) 0.9506314271

Alternate Method:

Set $\mathrm{Y} 1=\operatorname{binomcdf}(30,0.5, \mathrm{X})$ and use the table of values (starting at 0 and increment by 1) to find when the cumulative probability is at or just above the given cumulative probability. This gives you a view of all values to make decisions. For this example, search in the table to find the cumulative probability just larger than 0.95. Again, the number of
inBinom(
successes is 19.

IndpntAsk

IndpntAsk
Sets table to ask for independent-variable values.

IndpntAuto	
IndpntAuto	+ 2nd]
Sets table to generate independent-variable values automatically.	[TBLSET]
	Indpnt:
	Auto

Input	
Input	+ PRGM
Displays graph.	2:Input

Input	+ PRGM
Input [variable]	I/0
Input ["text",variable]	2:Input
Prompts for value to store to variable.	

Input	
Input [Strn,variable]	†PRGM
Displays Str n and stores entered value to variable.	$\mathbf{2 : I n p u t}$

inString(

inString(string,substring[,start])
2nd
Returns the character position in string of the first character of substring beginning at start.

int(
int(value)	MATH
Returns the largest integer a real or complex number, expression, list, or	NUM
matrix.	$5:$ int(

$\Sigma \operatorname{lnt}(1$	APPS
$\Sigma \operatorname{lnt}($ pmt $1, p m t 2[$, roundvalue $]$)	1:Finance
Computes the sum, rounded to roundvalue, of the interest amount	CALC
between pmtl and pmt 2 for an amortization schedule.	A: $\Sigma \operatorname{lnt}$ (

invNorm(
invNorm(area[, μ, σ, tail])
[20d[DISTR] DISTR 3:invNorm(

Computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by μ and σ-. The optional argument tail can be LEFT ($-\infty,-\mathrm{a}$), CENTER $[-\mathrm{a}, \mathrm{a}]$ or RIGHT (a, ∞) for Real a.

The tokens LEFT, CENTER and RIGHT can be found in [catalog].

LEFT is a tail argument for the invNorm(command where the optional
argument tail can be LEFT $(-\infty,-a)$, CENTER $[-a, a]$ or RIGHT (a, ∞) for Reala.
See also invNorm(.

RIGHT

RIGHT
2nd [CATALOG]
RIGHT is a tail argument for the invNorm(command where the optional RIGHT argument tail can be LEFT ($-\infty,-\mathrm{a}$), CENTER $[-\mathrm{a}, \mathrm{a}]$ or RIGHT (a, ∞) for Reala.
See also invNorm(.
CENTER
CENTER
CENTER is a tail argument for the invNorm(command where the
optional argument tail can be LEFT $(-\infty,-a)$, CENTER [-a, a] or RIGHT (a,
[CATALOG] for Real a.
See also invNorm(.

LEFT	RIGHT	CENTER
NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL Float auto real radian mp	Normal float auto real radian mp a \quad П
	CATALOG ref remainder Repeat Return PIGHT round *row row+ *row+	CATALOG binomedf(binompdf (BorderColor Boxplot CENTER check Tmr ($x^{2} \mathrm{cdf}($ $x^{2} \mathrm{pdf}($ x^{2}-Test (

invT(
$\left.\begin{array}{lr}\text { invT(area, } d f \text {) } & \text { 2nd [DISTR] } \\ \text { Computes the inverse cumulative student-t probability function specified } & \text { DISTR } \\ \text { by degree of freedom, df for a given area under the curve. } & \text { 4:invT(}\end{array}\right]$	

iPart(
iPart(value)	
Returns the integer part of a real or complex number, expression, list, or matrix.	NUM

$\operatorname{irr}($
$\operatorname{irr}(C F 0, C F L$ List $[, C F F r e q])$
Returns the interest rate at which the net present value of the cash flow is
equal to zero.
isClockOn
isClockOn

Identifies if clock is ON or OFF. Returns 1 if the clock is ON. Returns 0 if the 2nd]
clock is OFF.
[CATALOG]
isClockOn

IS>(
$: \mid S>($ variable,value $)$	+ PRGM
$:$ commandA	CTL
$:$ commands	A:IS>(

Increments variable by 1 ; skips commandA if variable $>$ value.
L

L	
$\left.\begin{array}{lr}\text { Llistname } & \text { 2nd [[LIST] } \\ \text { Identifies the next one to five characters as a user-created list name. } & \text { OPS } \\ & \text { B: } \mathbf{L}\end{array}\right]$	

LabelOff	
LabelOff	+ 2nd [FORMAT]

LabelOn	
LabelOn	†nd [FORMAT]
Turns on axes labels.	LabelOn

Lbl	
Lbl label	†PRGM
Creates a label of one or two characters.	CTL
	$9: L b l$

$\operatorname{Icm}($	MATH
$\mathbf{I c m}($ valueA, valueB)	NUM
Returns the least common multiple of valueA and valueB, which can be real numbers or lists.	$8: I \mathrm{~cm}($

length(
length(string)	
Returns the number of characters in string.	2nd
[CATALOG]	
length(

Line(
Line($X 1, Y 1, X 2, Y 2[$, erase \#, color\#, linestyle\#])	2nd [DRAW]
Draws a line from $(X 1, Y 1)$ to $(X 2, Y 2)$ with the following options: DRAW erase \#: 1,0, color \#: $10-24$, and line style \#: 1-4. $\mathbf{2 : L i n e (~}$	

Line(
Line $(X 1, Y 1, X 2, Y 2,0[$,line\#]	2nd [DRAW]
Erases a line (erase \#: 1,0$)$ from $(X 1, Y 1)$ to $(X 2, Y 2)$.	DRAW
	2:Line(

LinReg(a+bx)	
LinReg(a+bx) [Xlistname,Ylistname, freqlist,regequ]	STATT
Fits a linear regression model to Xlistname and Ylistname with	
frequency freqlist, and stores the regression equation to regequ.	8:LinReg
(a+bx)	

$\operatorname{LinReg}(a x+b)$
LinReg(ax+b) [Xlistname,Ylistname,freqlist,regequ]
Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.

LinRegTInt

LinRegTInt [Xlistname,Ylistname,freqlist,confidence
level, regequ]

+ STAT
TESTS
Performs a linear regression and computes the t confidence interval for G:LinRegTInt the slope coefficient b .

LinRegTTest	
LinRegTTest	+ STAT
[Xlistname, Ylistname,freqlist,alternative,regequ]	TESTS
Performs a linear regression and a t-test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is ; alternative $=\mathbf{1}$ is $>$.	F:LinRegTTest

Δ List(
Δ List(list)	2nd [LIST]
Returns a list containing the differences between consecutive elements in list.	$\begin{array}{r} \text { OPS } \\ \text { 7: } \Delta \text { List(} \end{array}$
List) matr (
List> matr(listname 1,...,listname n,matrixname)	2nd [LIST]
Fills matrixname column by column with the elements from each specified listname.	$\begin{aligned} & \text { OPS } \\ & \text { 0:List matr } \end{aligned}$

Returns the natural logarithm of a real or complex number, expression, or list.

LnReg	
LnReg [Xlistname,Ylistname,freqlist,regequ]	STAT]
Fits a logarithmic regression model to Xlistname and Ylistname with	CALC
frequency freqlist, and stores the regression equation to regequ.	9:LnReg

$\log ($
$\log ($ value $)$
LOG

Returns logarithm of a real or complex number, expression, or list.
logBASE(
logBASE(value, base)

Returns the logarithm of a specifed value determined from a specified
base: logBASE(value, base).

Logistic

Logistic [Xlistname,Ylistname,freqlist,regequ]
Fits a logistic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.

CALC
B:Logistic

Manual-Fit

Manual-Fit[equname,color\#,line style\#]
Fits a linear equation to a scatter plot with specified color and line style.
Color\#: 10-24 or color name pasted from [vars] COLOR.
line style \#: 1-4.

MATHPRINT

MATHPRINT

Displays most entries and answers the way they are displayed in
textbooks, such as $\frac{1}{2}+\frac{3}{4}$.
MATHPRINT

Matr)list(
Matrlist(matrix,listname , ...,listname n)	2nd [LIST]
Fills each listname with elements from each column in matrix.	OPS
	A:Matr list(

Matrllist(
Matrl list(matrix, column\#,listname)	2nd [LIST]
OPS	
Fills a listname with elements from a specified column\# in matrix.	A:Matr list

$\max ($	[MATH]
$\max ($ value $A, v a l u e B)$	NUM
Returns the larger of valueA and valueB.	$\mathbf{7 : m a x}\left(\begin{array}{l}\text { (}\end{array}\right]$

$\max ($	
$\max ($ list $)$	[MATH
Returns the larger of valueA and valueB.	NUM
	$\mathbf{7 : m a x}\left(\begin{array}{l}\text { (}\end{array}\right.$

$\boldsymbol{\operatorname { m a x }}($	
$\boldsymbol{m a x}($ list $)$	2nd [LIST]
Returns largest real or complex element in list.	MATH
	$\mathbf{2 : m a x}($

$\max ($	
$\boldsymbol{\operatorname { m a x } (\text { listA, } \text { list } B)}$	2nd [LIST]
Returns a real or complex list of the larger of each pair of elements in	MATH
listA and listB.	2:max(

$\max ($	
$\boldsymbol{\operatorname { m a x } (\text { value,list })}$	2nd [LIST]
Returns a real or complex list of the larger of value or each list element.	MATH
	2:max(

mean(
mean(list[,freqlist $]$)	2nd [LIST]
Returns the mean of list with frequency freqlist.	MATH
	3:mean(

median(
median(list[,freqlist $]$)	2nd [LIST]
Returns the median of l Ist with frequency freqlist.	MATH
	4:median(

Med-Med
Med-Med [Xlistname,Ylistname,freqlist,regequ]
Fits a median-median model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.

$\min ($
$\min ($ value $A, v a l u e B)$
MATH

$\min ($	
$\min (l i s t)$	2nd [LIST]
Returns smallest real or complex element in list.	MATH
	$1: m i n($

$\min ($	
$\min ($ list A, l list B)	2nd [LIST]
Returns real or complex list of the smaller of each pair of elements in	MATH
listA and list B.	1:min(

$\min ($	
$\min ($ value,list $)$	2nd [LIST]
Returns a real or complex list of the smaller of value or each list element.	MATH
	$\mathbf{1 : m i n (}$

ModBoxplot

ModBoxplot Plot\#(type,Xlist,[,freqlist,color\#])

+ 2nd [stat plot] TYPE Where \# gives Plot1, Plot2 or Plot3.

N

nCr	
value $A \mathrm{nCr}$ valueB	MATH]
Returns the number of combinations of valueA taken valueB at a time.	PRB
	$3: \mathrm{nCr}$

nCr	
value nCr list Returns a list of the combinations of value taken each element in list at a time.	MATH PRB 3:nCr
nCr	
list nCr value Returns a list of the combinations of each element in list taken value at a time.	$\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & 3: \mathrm{nCr} \end{aligned}$
nCr	
list $A \mathrm{nCr}$ list B Returns a list of the combinations of each element in list A taken each element in list B at a time.	$\begin{array}{r} \text { MATH } \\ \text { PRB } \\ 3: \mathrm{nCr} \end{array}$
n/d	
n / d Displays results as a simple fraction.	$\begin{array}{r} \text { ALPHA }[\mathrm{F} 1] \\ 1: \mathrm{n} / \mathrm{d} \end{array}$
	MATH NUM D: n/d or
	MATH FRAC 1:n/d

nDeriv(

nDeriv(expression,variable,value $[, \varepsilon]$)
When command is used in Classic mode, returns approximate numerical derivative of expression with respect to variable at value, with

In MathPrint mode, numeric derivative template pastes and uses default tolerance ε.

- n / d 4 Un/d

- n / d \& Un/d

ALPHA [F1]

Converts the results from a fraction to mixed number or from a mixed number to a fraction, if applicable.

A: n/d4

Un/d
or
MATH
FRAC
4: n / d
-Un/d

-Nom(

>Nom(effective rate,
compounding periods)

APPS 1:Finance
CALC
B: Nom(

Normal

Normal
† MODE
Sets normal display mode.
Normal
normalcdf(
normalcdf(lowerbound,upperbound $[, \mu, \sigma]$)
2nd [DISTR] DISTR
Computes the normal distribution probability between lowerbound and upperbound for the specified μ and σ.
normalpdf(
normalpdf($x[, \mu, \sigma])$
2nd [DISTR]
DISTR
Computes the probability density function for the normal distribution at a 1:normalpdf(

NormProbPlot

NormProbPlot Plot\#(type,Xlist,[,freqlist,color\#])

Used as the "type" argument in the command

[stat plot]

TYPE
Where \# gives Plot1, Plot2 or Plot3.

$\operatorname{not}($	2nd [TEST]
not(value) LOGIC Returns 0 if value is 0. value can be a real number, expression, or list.	
	4:not(

nPr	
value nPr value B	MATH]
Returns the number of permutations of valueA taken valueB at a time.	PRB
	$\mathbf{2 : n P r}$

nPr	
value nPr list	MATH
Returns a list of the permutations of value taken each element in list at a time.	2:nPr

nPr	
$l i s t$ nPr value	MATH
Returns a list of the permutations of each element in list taken value at a time.	2:nPr

nPr	
list $A \mathrm{nPr}$ list B	MATH
Returns a list of the permutations of each element in l list A taken each element in l list B at a time.	$\mathbf{2 : n P r}$

npv(
npv(interest rate,CF0,CFList $[, C F F r e q]$)	APPS
Computes the sum of the present values for cash inflows and outflows.	1:Finance
	7:npv(

0

OpenLib(
OpenLib(+ PRGM
Extends TI-Basic. (Not available.)	J:OpenLib
	(

or	
value A or value B 2nd [TEST] Returns 1 if value or valueB is 0. valueA and valueB can be real numbers, expressions, or lists. LOGIC	2:or

Output(

Output(row,column,"text")	† PRGM
Displays text beginning at specified row and column of the home screen.	6:Output(

Output(

Output(row,column,value)	PRGM
Displays value beginning at specified row and column of the home screen.	6:Output(

P

Param	
Param	$+\boxed{M O D E}$
	Par

Sets parametric graphing mode.

Pause	
Pause	+ PRGM
Suspends program execution until you press ENTER.	CTL
8:Pause	

Pause	
Pause [value]	† PRGM
Displays value; suspends program execution until you press ENTER.	CTL
	$8: P a u s e$

Pause

Pause [value, time]
Displays value on the current home screen and execution of the program continues after the time period specified. For time only, use Pause "'",time where the value is a blank string. Time is in seconds.
:---

Pause value,time.
piecewise
piecewise(
math.
New piecewise function to support entry of functions as they are seen in textbook. This command can be found in math MATH B:piecewise(
Δ or to scroll to B:piecewise
Plot1(Plot2(Plot3(
Plot\#type,Xlist,[_freqlist, color\# $]$)

Plot1(Plot2(Plot3(
Defines Plot\#(1, 2, or 3) of type Histogram or Boxplot for Xlist with	[STAT PLOT]
frequency freqlist and color\#.	STAT PLOTS
Color\#: $10-24$ or color name pasted from [vars] COLOR.	1:Plot1
Note: Xlist represents the Xlist name.	2:Plot2
	3:Plot3

Plot1(Plot2(Plot3(
Plot\#type,Xlist,[,freqlist,mark,color\#])
Defines Plot\#(1, 2, or 3) of type ModBoxplot for Xlist with frequency freqlist using mark and color \#.

2nd
[STAT PLOT]

Color\#: 10-24 or color name pasted from [vars] COLOR.
1:Plot1
2:Plot2
Note: Xlist represents the Xlist name.

Plot1(Plot2 (Plot3(
Plot\#(type,datalist,[,data axis,mark, color\#])	+ 2nd
	[STAT PLOT]
axis using mark and color \# data axis can be \mathbf{X} or \mathbf{Y}.	STAT PLOTS
Color\#: 10-24 or color name pasted from [vars] COL	1:Plot1
te: datalist represents the datalist name.	3:Plot3

PlotsOff	2nd]
PlotsOff $[1,2,3]$	[STAT PLOT]
Deselects all stat plots or one or more specified stat plots (1, 2, or 3).	STAT
	PLOTS
	$4:$ PlotsOff

PlotsOn

PlotsOn [1,2,3]
Selects all stat plots or one or more specified stat plots (1, 2, or $\mathbf{3})$.
Pmt_Bgn
Pmt_Bgn
Specifies an annuity due, where payments occur at the beginning of each APPS

Pmt_End	APPS
Pmt_End	1:Finance
Specifies an ordinary annuity, where payments occur at the end of each payment period.	E:Pmt_End

poissoncdf(
poissoncdf (μ, x)	2nd [DISTR]
Computes a cumulative probability at x for the discrete Poisson distribution with specified mean μ. DISTR	
	D:poissoncdf

poissonpdf(
poissonpdf(μ, x)
2nd [DISTR]
DISTR
Computes a probability at x for the discrete Poisson distribution with the specified mean μ.

Polar	
Polar	+ MODE
Sets polar graphing mode.	Polar

PPolar

complex value >Polar
MATH
Displays complex value in polar format.
CMPLX
7: Polar

PolarGC
PolarGC
Sets polar graphing coordinates format.

+ 2nd
[FORMAT]
PolarGC

prgm	
prgmname	† PRGM
Executes the program name.	CTRL
	D:prgm

SPrn(
इPrn(pmt 1,pmt 2 [,roundvalue])	APPS
Computes the sum, rounded to roundvalue, of the principal amount between $p m t 1$ and $p m t 2$ for an amortization schedule.	1:Finance CALC
	0: Σ Prn(

prod(
prod(list[,start,end])	2nd [LIST]
Returns product of list elements between start and end	MATH
	6:prod(

Prompt	+ PRGM
Prompt variable $[$, variableB,...,variable $n]$ I/O Prompts for value for variableA, then variableB, and so on. 2:Prompt	

1-PropZInt(

1-PropZInt(x, n [,confidence level])

+ STAT
TESTS
A:1-PropZInt(

2-PropZInt(+ STAT
2-PropZInt($x 1, n 1, x 2, n 2[$, confidence level $]$)	
Computes a two-proportion z confidence interval.	TESTS
	B:2-PropZInt(

1-PropZTest(

1-PropZTest(p0,x,n[,alternative,drawflag, color\#])

+ STAT
TESTS
5:1-PropZTest

Computes a one-proportion z test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is
; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag $=\mathbf{0}$
5:1-PropZTest
calculates results.
Color\#: 10-24 or color name pasted from [vars] COLOR.

2-PropZTest(

2-PropZTest(x1,n1,x2,n2[,alternative,drawflag, color\#])
Computes a two-proportion z test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is
; alternative $=\mathbf{1}$ is $>$. drawflag=1 draws results; drawflag=0

+ STAT TESTS 6:2-PropZTest calculates results.
Color\#: 10-24 or color name pasted from [vars] COLOR.

Pt-Change(

Pt-Change ($x, y[$, color\#] $)$

Toggles a point on or off at (x, y) on the graph area. Off will be in the Background color and On will be the specified
Color\#: 10-24 or color name pasted from [vars] COLOR.

Pt-Off(

Pt-Off($x, y[, m a r k])$

$$
\begin{array}{r}
\text { 2nd [DRAW] } \\
\text { POINTS } \\
\text { 2:Pt-Off(}
\end{array}
$$

Erases a point at (x, y) on the graph area using mark. The Off state may be the background color determined by the ImageVar or color setting.
Colort: 10-24 or color name pasted from [vars] COLOR.

Pt-On(

Pt-On($x, y[$,mark, color\#] $)$
Draws a point at (x, y) on the graph area using mark and the specified POINTS color\#.

Color\#: 10-24 or color name pasted from [vars] COLOR.

PwrReg

PwrReg [Xlistname,Ylistname,freqlist,regequ]
Fits a power regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.

Pxl-Change(

Pxl-Change(row,column[,color\#])
2nd [DRAW] POINTS

6:Pxl-Change

Toggles On to Off in the graph area: Off will display the set Background Image Var or Color.

Colort: 10-24 or color name pasted from [vars] COLOR.

Pxl-Off(

PxI-Off(row,column)
2nd [DRAW]
POINTS
5:Pxl-Off(

Pxl-On(

PxI-On(row,column[,color\#])
Draws pixel on the graph area at (row,column) in the specified color.
Color\#: 10-24 or color name pasted from [vars] COLOR.

pxl-Test(

pxl-Test(row,column)
2nd [DRAW]
Returns 1 if pixel (row, column) is on, 0 if it is off;

Pr Rx

$\mathrm{P} \boldsymbol{\mathrm { Rx }}(r, \theta)$
2nd [ANGLE]
ANGLE
Returns \mathbf{X}, given polar coordinates r and θ or a list of polar coordinates.

P>Ryl	
P> $\mathrm{Ry}(r, \theta)$	2nd [ANGLE]
Returns \mathbf{Y}, given polar coordinates r and θ or a list of polar coord	ANGLE
Returns Y, given polar coordinates r and θ or a list of polar coor	8:P > Ryl

QuadReg	
QuadReg [Xlistname,Ylistname,freqlist,regequ]	STAT]
Fits a quadratic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ.	5:QuadReg

QuartReg

QuartReg [Xlistname,Ylistname,freqlist,regequ]

STAT
CALC
7:QuartReg

R

Radian	
Radian	+ MODE
Sets radian angle mode.	Radian

rand	
rand[(numtrials $)$]	[MATH]
Return a random number between 0 and 1 for a specified number of	PRB
trials numtrials.	$1:$:rand

randBin(
randBin((numtrials,prob[,numsimulations $]$)	[MATH]
Generates and displays a random real number from a specified Binomial distribution.	7:randBin(

randInt(

randInt(lower,upper [,numtrials])
Generates and displays a random integer within a range specified by lower and upper integer bounds for a specified number of trials 5:randInt(numtrials.

randIntNoRep(

randIntNoRep(lowerint,upperint [,numelements])

Returns a random ordered list of integers from a lower integer to an PRB upper integer which may include the lower integer and upper integer. 8:randIntNoRep(If the optional argument numelements is specified, the first numelements are listed. The first numelements term in the list of random integers are displayed.

randM(
randM(rows, columns)	2nd]
Returns a random matrix of rows \times columns.	[MATRIX]
Max rows x columns $=400$ matrix elements.	MATH
	6:randM(

randNorm(
randNorm($\mu, \sigma[$, numtrials $]$)	MATH]
Generates and displays a random real number from a specified Normal distribution specified by μ and σ for a specified number of trials numtrials.	6:randNorm(

$\mathbf{r} \mathbf{e}^{\wedge} \theta i$
$\mathbf{r} \mathbf{e}^{\wedge} \theta i$

Sets the mode to polar complex number mode ($\left.\mathbf{r} e^{\wedge} \theta i\right)$.

Real
Real
Sets mode to display complex results only when you enter complex numbers.
M0DE
Real

real(
real(value)	[MATH]
Returns the real part of a complex number or list of complex numbers.	2:real(

RecallGDB

RecallGDB n

2nd [DRAW] STO
Restores all settings stored in the graph database variable GDB n.
4:RecalIGDB

RecallPic	2nd [DRAW]
RecallPic n	STO
Displays the graph and adds the picture stored in Pic n.	2:RecallPic

Rect

complex value $\boldsymbol{\nabla}$ Rect
Displays complex value or list in rectangular format.
MATH
CMPLX
6: Rect

RectGC	
RectGC	† 2nd
Sets rectangular graphing coordinates format.	[FORMAT]
	RectGC

ref(
ref(matrix)	
Returns the row-echelon form of a matrix.	2nd]
	[MATRIX]
	MATH
A:ref(

remainder(
remainder(dividend, divisor)
Reports the remainder as a whole number from a division of two whole
numbers where the divisor is not zero.

remainder(
remainder(list, divisor) Reports the remainder as a whole number from a division of two lists where the divisor is not zero.
NUM

remainder(
remainder(dividend, list)

Reports the remainder as a whole number from a division of two whole
numbers where the divisor is a list.

remainder(
remainder(list, list)	
Reports the remainder as a whole number from a division of two lists.	[MATH]
	NUM

Repeat	
Repeatcondition:commands:End:commands	† PRGM
Executes commands until condition is true.	CTL

Return	† PRGM
Return	CTL
Returns to the calling program.	E:Return

round(
round(value[,\#decimals])	
Returns a number, expression, list, or matrix rounded to \#decimals (9).	MATH NUM
2:round(

*row(
*row(value, matrix,row) 2nd] [MATRIX] Returns a matrix with row of matrix multiplied by value and stored in MATH row. E: * row(

Returns a matrix with row A of matrix added to row B and stored in row B.

*row+(

*row+(value,matrix, rowA,rowB)
Returns a matrix with rowA of matrix multiplied by value, added to row B, and stored in rowB.

rowSwap(
rowSwap(matrix, row A, row B)	2nd [MATRIX]
Returns a matrix with rowA of matrix swapped with rowB.	MATH
	C:rowSwap(

rref(
$\operatorname{rref}($ matrix $)$ 2nd [MATRIX] Returns the reduced row-echelon form of a matrix. MATH	
	B:rref(

R) $\operatorname{Pr}($
$\mathrm{R}>\operatorname{Pr}(x, y)$
2nd [ANGLE]
ANGLE
Returns \mathbf{R}, given rectangular coordinates x and y or a list of rectangular coordinates.

5: $\mathrm{R} \boldsymbol{P} \operatorname{Pr}($
R) $\mathbf{P} \boldsymbol{\theta}$ (
$\mathrm{R}>\mathbf{P} \boldsymbol{\theta}(x, y)$
2nd [ANGLE] ANGLE
Returns θ, given rectangular coordinates x and y or a list of rectangular coordinates.

2-SampFTest

2-SampFTest	+ STAT
listname1	TESTS
lis:2-Samp \mathbf{F} Test	

'
listname 2
,freqlist1,freqlist2,alternative,drawflag,color\#]
Performs a two-sample F test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$
is ; alternative $\mathbf{= 1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results.

Color\#: 10-24 or color name pasted from [vars] COLOR.

2-SampFTest

2-SampFTestSx1,n1,Sx2,n2

+ STAT
[,alternative,drawflag,color\#]
TESTS
Performs a two-sample F test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ E:2-Samp F Test is ; alternative $\mathbf{= 1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results.

Colort: 10-24 or color name pasted from [vars] COLOR.

2-SampTInt

2-SampTInt
[listname1,listname2,freqlist1,freqlist2,confidence TESTS level,pooled]

0:2-SampTInt
(Data list input)
Computes a two-sample t confidence interval. pooled $=\mathbf{1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances.

2-SampTInt

2-SampTInt $\overline{\mathrm{x}} 1, S x 1, n 1, \overline{\mathrm{x}} 2, S x 2, n 2[$, confidence	+ STAT
level,poled $]$ (Summary stats input)	TESTS

Computes a two-sample t confidence interval. pooled $=\mathbf{1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances.

2-SampTTest

2-SampTTest

+ STAT
[TESTS 4:2-SampTTest
,
listname 2
freqlist 1
,freqlist 2,alternative,pooled,drawflag,color\#])
Computes a two-sample t test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is ; alternative $\mathbf{= 1}$ is $>$.pooled $\mathbf{= 1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results.

Color\#: 10-24 or color name pasted from [vars] COLOR.

2-SampTTest

2-SampTTestx $1, S x 1, n 1, v 2, S x 2, n 2$
[,alternative,pooled,drawflag,color\#])
Computes a two-sample t test. alternative $=\mathbf{- 1}$ is $<$; alternative $=\mathbf{0}$

+ STAT
 TESTS
 4:2-SampTTest

is ; alternative $\mathbf{= 1}$ is $>$.pooled $\mathbf{= 1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results.

Colort: 10-24 or color name pasted from [vars] COLOR.

2-SampZInt(

2-SampZInt $\left(\sigma_{1}, \sigma_{2}\right.$

[,listname1,listname2,freqlist1,freqlist2,confidence level])

+ STAT
TESTS 9:2-SampZInt(

Computes a two-sample z confidence interval.

2-SampZInt(

2-SampZInt($\sigma_{1}, \sigma_{2}, \bar{x} 1, n 1, \bar{x} 2, n 2[$, confidence level $]$)	+ STATT
(Summary stats input)	TESTS
Computes a two-sample z confidence interval.	9:2-SampZInt(

[^0]
2-SampZTest(

2-SampZTest $\left(\sigma_{1}, \sigma_{2}\right.$	+ STAT
$[$,	TESTS
listname1	3:2-SampZTest(

'listname2
,freqlist 1,freqlist2,alternative,drawflag,color\#])
Computes a two-sample z test. alternative $=-\mathbf{1}$ is <; alternative $=\mathbf{0}$ is
; alternative $\mathbf{= 1}$ is >. drawflag=1 draws results; drawflag=0
calculates results.
Color\#: 10-24 or color name pasted from [vars] COLOR.

2-SampZTest(

2-SampZTest $\left(\sigma_{1}, \sigma_{2}, \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2\right.$
[,alternative,drawflag,color\#])

+ STAT
TESTS
3:2-SampZTest(
Computes a two-sample z test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is ; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results.

Color\#: 10-24 or color name pasted from [vars] COLOR.

Scatter	
Scatter Plot\#(type,Xlist,[,freqlist,color\#])	2nd][stat plot]
Used as the "type" argument in the command	TYPE
Where \# gives Plot1, Plot2 or Plot3.	

Sci	
Sci	$+\frac{\text { MODE }}{}$
Sets scientific notation display mode.	$\mathbf{S C I}$

Select(
Select(Xlistname, Ylistname)	2nd [[LIST]
Selects one or more specific data points from a scatter plot or xyLine OPS plot (only), and then store's the selected data points to two new lists, Xlistname and Ylistname. 8:Select(

Send(
Send(string)

+ PRGM
Sends one or more TI-Innovator ${ }^{\text {TM }}$ Hub commands to a connected I/O hub.

Notes:

See also eval(and Get (command related to the Send(command.
TI-Innovator ${ }^{\text {rTM }}$ Hub commands are supported in the HUB submenu in the CE OS v.5.2 program editor.

	TI- Innovator™
Send(Hub
Send(string)	+ PRGM
Sends one or more TI-Innovatorm	
Hub commands to a connected hub.	HUB

Notes:
See also eval(and Get (command related to the Send (command.
TI-Innovator ${ }^{\text {TM }}$ Hub commands are supported in the HUB submenu in the CE OS v.5.2 program editor.

See menu
location depending on TIInnovator Hub sensors.

seq(
seq(expression, variable, begin,end[,increment])	2nd [LIST]
Returns list created by evaluating expression with regard to	OPS
variable, from begin to end by increment.	5:seq(

SEQ (n)
Seq (n)
In sequence mode, SEQ (n) sets the sequence editor type to enter sequence functions, u, v, or w, as a function of the independent variable n. Can also be set from the $Y=$ editor in SEQ mode.

SEQ $(n+1)$
Seq $(n+1)$
In sequence mode, $\operatorname{SEQ}(n+1)$ sets the sequence editor type to enter sequence functions, u, v, or w, as a function of the independent variable $n+1$. Can also be set from the $Y=$ editor in SEQ mode.

SEQ $(n+2)$
$\operatorname{Seq}(n+2)$

+ MODE
In sequence mode, $\operatorname{SEQ}(n+2)$ sets the sequence editor type to enter sequence functions, u, v, or w, as a function of the independent variable $\operatorname{SEQ}(n+2)$ $n+2$. Can also be set from the $Y=$ editor in SEQ mode.

mal float huto keal radian mp aŋ	Note: "Type" will NOT be included in the TIC CE PE syntax
CATALOG	
Send	On the device, "Type" does not paste and is similar to how the device displays, for example, DEC Answers where Answers appears in [catalog] but does not paste.
seq	
$\rightarrow \operatorname{SEQ}(n)$ Type	
SEQ($n+1$) Type	
SEQ($n+2$) Type	
Sequential	
setDatel	
setDtFmt (

Seq	
Seq	$+\boxed{\text { MODE }}$
Sets sequence graphing mode.	Seq

Sequential

Sequential
Sets mode to graph functions sequentially.
setDate(
setDate(year,month,day)
2nd [CATALOG] setDate(
Sets the date using a year, month, day format. The year must be 4
digits; month and day can be 1 or 2 digit.

setDtFmt(

setDtFmt(integer)
2nd
[CATALOG]
Sets the date format. setDtFmt(
$1=M / D / Y$
$2=\mathrm{D} / \mathrm{M} / \mathrm{Y}$
$3=Y / M / D$

setTime(

setTime(hour,minute, second)

2nd [CATALOG] setTime(

Sets the time using an hour, minute, second format. The hour must be in 24 hour format, in which $13=1$ p.m.

setTmFmt(

setTmFmt(integer)

2nd [CATALOG] setTmFmt(

Sets the time format.
$12=12$ hour format
$24=24$ hour format

SetUpEditor

SetUpEditor	STAT]
Removes all list names from the stat list editor, and then restores list	EDIT
names L1 through L6 to columns $\mathbf{1}$ through $\mathbf{6 .}$	5:SetUpEditor

SetUpEditor

SetUpEditor listname 1[,listname2,...,listname20]
Removes all list names from the stat list editor, then sets it up to display one or more listnames in the specified order, starting with

Shade χ^{2} (

Shade χ^{2} (lowerbound,upperbound,df \lfloor,color\#])
Draws the density function for the χ^{2} distribution specified by degrees of freedom $d f$, and shades and colors the area between lowerbound and upperbound.

Color\#: 10-24 or color name pasted from [vars] COLOR.

Shade F(

ShadeF
2nd [DISTR]
(lowerbound,upperbound,numerator df,denominator dfl,color\#])

DRAW

Draws the density function for the F distribution specified by numerator $d f$ and denominator $d f$ and shades and colors the area between lowerbound and upperbound.
Color\#: 10-24 or color name pasted from [vars] COLOR.

ShadeNorm(

ShadeNorm(lowerbound,upperbound $[, \mu, \sigma$, color\# $]$)
Draws the normal density function specified by μ and σ and shades and colors the area between lowerbound and upperbound.
Color\#: 10-24 or color name pasted from [vars] COLOR.

Shade_t(2nd [DISTR]
Shade_t (lowerbound,upperbound,dfl, color\#])	DRAW
Draws the density function for the Student-t distribution specified by degrees of freedom df, and shades or colors the area between lowerbound and upperbound.	2:Shade_t(

Color\#: 10-24 or color name pasted from [vars] COLOR.

Simul	
Simul	+ MODE
Sets mode to graph functions simultaneously.	Simul

$\sin ($
$\boldsymbol{\operatorname { s i n }}($ value $)$
SIN

Returns the sine of a real number, expression, or list.

$\sin ^{-1}($	
$\boldsymbol{\operatorname { s i n }}^{-1}($ value $)$	2nd [SIN-1]

Returns the arcsine of a real number, expression, or list.

$\sinh ($

$\sinh ($ value $)$
2nd [CATALOG]
Returns the hyperbolic sine of a real number, expression, or list.

```
sinh}\mp@subsup{}{}{-1
sinh}\mp@subsup{}{}{-1}\mathrm{ (value)
```

Returns the hyperbolic arcsine of a real number, expression, or list.

SinReg

SinReg
[iterations,Xlistname,Ylistname,period,regequ]
Attempts iterations times to fit a sinusoidal regression model to C:SinReg Xlistname and Ylistname using a period guess, and stores the regression equation to regequ.

SortA(
SortA(listname)	2nd [LIST]
Sorts elements of listname in ascending order.	OPS
	1:SortA(

SortA(

SortA(keylistname,dependlist 1 2nd [LIST]
[,dependlist $2, . . .$, dependlist n]) OPS

Sorts elements of keylistname in ascending order, then sorts each 1:SortA(dependlist as a dependent list.

SortD(
SortD(listname)	2nd [LIST]
Sorts elements of listname in descending order.	OPS
	2:SortD(

SortD(

SortD(keylistname,dependlist $1[$, dependlist $2, \ldots$, 2nd [LIST] dependlist n]) OPS

Sorts elements of keylistname in descending order, then sorts each 2:SortD(dependlist as a dependent list.

startTmr

startTmr

2nd [CATALOG]
startTmr
Starts the clock timer. Store or note the displayed value, and use it as the argument for checkTmr() to check the elapsed time.

STATWIZARD OFF

STATWIZARD OFF

2nd [CATALOG]
Disables wizard syntax help for statistical commands, distributions, and STATWIZARD OFF

STATWIZARD ON	
STATWIZARD ON	2nd [CATALOG]
Enables wizard syntax help for statistical commands, distributions, and seq(.	STATWIZARD

stdDev(list[,freqlist])	2nd [LIST]
Returns the standard deviation of the elements in list with frequency freqlist.	MATH 7:stdDev(

Stop	+ PRGM
Stop	CTL
Ends program execution; returns to home screen.	F:Stop

Store \rightarrow
Store: value \rightarrow variable

Stores value in variable.

StoreGDB

StoreGDB n	2nd [DRAW]
Stores current graph in database GDB n.	STO

StorePic	
StorePic n	2nd [DRAW]
Stores current picture in picture Picn.	STO
	1:StorePic

String) Equ(

String $\boldsymbol{E q u}($ string, $\mathbf{Y}=v a r$)

\author{

+ PRGM
 1/0
}

Converts string into an equation and stores it in $\mathrm{Y}=\mathrm{var}$.
string can be a string or string variable.
String〉Equ(is the inverse of Equ>String(.

```
sub(
sub(string,begin,length)
Returns a string that is a subset of another string, from begin to length.
```

sum(
$\operatorname{sum}($ list $[$,start,end $]$)	2nd [LIST]
Returns the sum of elements of list from start to end.	MATH
	5:sum(

Σ (expression[,start,end])	MATH
Classic command as shown.	NUM
In MathPrint ${ }^{\text {TM }}$ the summation entry template displays and returns the sum of elements of list from start to end, where start $<=$ end	0 : summation $\Sigma($

T
$\boldsymbol{\operatorname { t a n } (})$
$\boldsymbol{\operatorname { t a n } (\text { value })}$
Returns the tangent of a real number, expression, or list. TAN
$\tan ^{-1}($

Returns the arctangent of a real number, expression, or list.

Tangent(
Tangent(expression,value[, color\#,linestyle\#])
Draws a line tangent to expression at $\mathbf{X}=v$ alue with specified color \#: 10-24 and line style linestyle \#: 1-2.

Colort: 10-24 or color name pasted from [vars] COLOR.

tanh (

\tanh (value)
Returns hyperbolic tangent of a real number, expression, or list.
$\tanh ^{-1}($
$\tanh ^{-1}$ (value)

Returns the hyperbolic arctangent of a real number, expression, or list.

tcdf(
 tcdf(lowerbound,upperbound, $d f$)

Computes the Student- t distribution probability between lowerbound and upperbound for the specified degrees of freedom $d f$.

Text(
Text(row,column,text 1, text $2, \ldots$, text n)	2nd [DRAW]
	DRAW
164 and 0 column 264.	0:Text(
Full mode, row must be <=148; column must be 256	
Horiz mode, row must be row<=66 and column must be <=256	
G-T mode, row must be row <=126; column must be 176	
TextColor	
TextColor([color\#]	+ 2nd

TextColor(
Set text color prior to using the Text(command.
Colort: $10-24$ or color name pasted from [vars] color.

[DRAW]
DRAW

Then

Then

See If:Then

Thick

Thick	+ MODE
Resets all $Y=$ editor line-style settings to Thick.	Thick

Thin	
Thin MODE	
Resets all Y =editor line-style settings to Thin.	Thin

Time

Time

Sets sequence graphs to plot with respect to time.

+ 2nd
[FORMAT]
Time
timeCnv(
timeCnv(seconds)
Converts seconds to units of time that can be more easily understood for evaluation. The list is in \{days, hours, minutes, seconds\} format.

TInterval

TInterval [listname,freqlist,confidence level]	+ STAT
(Data list input)	TESTS
Computes a t confidence interval.	$\mathbf{8 : T I n t e r v a l ~}$

TInterval $\overline{\mathrm{x}}, S x, n[$, confidence level $]$
(Summary stats input)
Computes a t confidence interval.

toString(

toString((value[,format]) † PRGM

Converts value to a string where value can be real, complex, an evaluated expression, list, or matrix. String value displays in classic format (0) following the mode setting AUTO/DEC or in decimal format (1).

tpdf(2nd [DISTR]
tpdf($x, d f$)	DISTR
Computes the probability density function (pdf) for the Student- t	5:tpdf(

Trace

Trace TRACE

Displays the graph and enters TRACE mode.

T-Test

T-Test $\mu 0$ \dagger STAT
[,listname,freqlist,alternative,drawflag,color\#]) TESTS (Data list input)

2:T-Test
Performs a t test with frequency freq list. alternative $=-1$ is $<$; alternative $=\mathbf{0}$ is ; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag $=\mathbf{0}$ calculates results.

Color\#: 10-24 or color name pasted from [vars] COLOR.

T-Test

T-Test $\mu 0, \bar{x}, S x, n[$, alternative,drawflag,color\#])

+ STAT
TESTS
Performs a t test with frequency freq list. alternative $=\mathbf{- 1}$ is <;
alternative $=\mathbf{0}$ is ; alternative $=\mathbf{1}$ is >. drawflag $=\mathbf{1}$ draws results; 2:T-Test drawflag $=\mathbf{0}$ calculates results.

Colort: 10-24 or color name pasted from [vars] COLOR.

tvm_FV

tvm_FV[(N,I\%,PV,PMT,P/Y,C/Y)]
APPS
Computes the future value.

tvm_I\%	
tvm_I $\%[(\mathbf{N}, P V, P M T, F V, P / Y, C / Y)]$	APPS
Computes the annual interest rate.	1:Finance
	CALC
	3:tvm_
	$\mathbf{I} \%$

tvm_N	
tvm_N $\mathbf{N}(\mathbf{I} \%, P V, P M T, F V, P / Y, C / Y)]$	APPS
Computes the number of payment periods.	1:Finance
	CALC
	5:tvm_ \mathbf{N}

tvm_Pmt	
tvm_Pmt[(N,I\%, $P V, F V, P / Y, C / Y)]$	APPS
Computes the amount of each payment.	1:Finance
	CALC
	2:tvm_-
	Pmt

tvm_PV	
tvm_PV $[(\mathbf{N}, \mathrm{I} \%, P M T, F V, P / Y, C / Y)]$	APPS
Computes the present value.	1:Finance
	CALC
	4:tvm_PV

u

UnArchive	2nd [MEM]
UnArchive variable	6:UnArchive
Moves the specified variables from the user data archive memory to RAM.	
To archive variables, use Archive.	

Un/d	
Un/d	MATH
Displays results as a mixed number, if applicable.	NUM
	C: Un/d
	or
	MATH
	FRAC
	2:Un/d

uvAxes
$\left.\begin{array}{l}\text { uvAxes } \\ \text { Sets sequence graphs to plot } \mathbf{u}(n) \text { on the } x \text {-axis and } \mathbf{v}(n) \text { on the } y \text {-axis. } \\ \text { [FORMAT] }\end{array}\right]$

uwAxes
uwAxes
Sets sequence graphs to plot $\mathbf{u}(n)$ on the x-axis and $\mathbf{w}(n)$ on the y-axis.
[FORMAT]
uw

V

1-VarStats

1-VarStats [Xlistname,freqlist]
Performs one-variable analysis on the data in Xlistname with frequency freqlist.

STAT
CALC
1:1-Var Stats

2-VarStats

2-VarStats [Xlistname,Ylistname,freqlist]

Performs two-variable analysis on the data in Xlistname and Ylistname with frequency freqlist.

STAT
CALC
2:2-Var Stats

variance(
variance(list $[$, freqlist $]$)	2nd [LIST]
Returns the variance of the elements in list with frequency freqlist.	MATH
	8:variancel

Vertical

Vertical $x[$,color\#,linestyle\#]
Draws a vertical line at x with specified color and line style.
Color\#: 10-24 or color name pasted from [vars] COLOR.
line style \#: 1-4.

| vwAxes |
| :--- | ---: |
| vwAxes |
| Sets sequence graphs to plot $\mathbf{v}(n)$ on the x-axis and $\mathbf{w}(n)$ on the y-axis. |
| [FORMAT] |
| 2nd] |

w
Wait

Wait time
Suspends execution of a program for a given time. Maximum time is 100 seconds.
A:Wait

Wait	$\begin{array}{r} \text { TI- } \\ \text { Innovator }{ }^{\mathrm{Tm}} \end{array}$
Wait time	+ PRGM
Suspends execution of a program for a given time. Maximum time is 100 seconds.	HUB 4:Wait
Web	
Web	+ 2nd
Sets sequence graphs to trace as webs.	[FORMAT] Web

:While	
:Whilecondition:commands	† PRGM
:End:command	CTL
Executes commands while condition is true.	5:While

value A xor value B
2nd [TEST]
LOGIC
Returns 1 if only value A or value $B=0$. value A and value B can be real numbers, expressions, or lists.

3:xor

xyLine

xyLine Plot\#(type, Xlist,[,freqlist,color\#])
\dagger
Used as the "type" argument in the command
Where \# gives Plot1, Plot2 or Plot3.
TYPE

Z

ZBox

ZBox	† ZOOM
Displays a graph, lets you draw a box that defines a new viewing window,	ZOOM
and updates the window,	1:ZBox

ZDecimal

ZDecimal

+ ZOOM
ZOOM 4:ZDecimal

Adjusts the viewing window so that TraceStep=0.1, $\Delta \mathrm{X}=\mathbf{0 . 5}$ and $\Delta \mathbf{Y}=\mathbf{0 . 5}$, and displays the graph screen with the origin centered on the screen.

ZFrac1/2
ZFrac1/2
ZOOM
ZOOM
Sets the window variables so that you can trace in increments of $\frac{1}{2}$, if B:ZFrac1/2 possible. Sets TraceStep to ${ }^{\frac{1}{2}}$ and $\Delta \mathbf{X}$ and $\Delta \boldsymbol{Y}$ to ${ }^{\frac{1}{4}}$.

ZFrac1/3
ZFrac1/3
ZOOM
ZOOM
C:ZFrac1/3
Sets the window variables so that you can trace in increments of $\frac{1}{3}$, if possible. Sets TraceStep to ${ }^{\frac{1}{3}}$ and $\Delta \mathbf{X}$ and $\Delta \boldsymbol{Y}$ to ${ }^{\frac{1}{6}}$.

ZFrac1/4

ZFrac1/4
ZOOM
ZOOM D:ZFrac1/4
Sets the window variables so that you can trace in increments of $\frac{1}{4}$, if possible. Sets TraceStep to ${ }^{\frac{1}{4}}$ and $\Delta \mathbf{X}$ and $\Delta \boldsymbol{Y}$ to ${ }^{\frac{1}{8}}$.

ZFrac1/5

ZFrac1/5
ZOOM
Sets the window variables so that you can trace in increments of $\frac{1}{5}$, if ZOOM

Sets the window variables so that you can trace in increments of 5 , if E:ZFrac1/5 possible. Sets TraceStep to ${ }^{\frac{1}{5}}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{10}$.

ZFrac1/8

ZFrac1/8

ZOOM
ZOOM
Sets the window variables so that you can trace in increments of $\frac{1}{8}$, if F:ZFrac1/8

ZFrac1/10
ZFrac1/10 ZOOM

Sets the window variables so that you can trace in increments of $\frac{1}{10}$, if \quad G:ZFrac1/10 possible. Sets TraceStep to ${ }^{\frac{1}{10}}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to ${ }^{\frac{1}{20}}$.

ZInteger

ZInteger	\dagger ZOOM
Redefines the viewing window using the following dimensions:	ZOOM
TraceStep=1, $\Delta \mathbf{X}=\mathbf{0 . 5}, \mathbf{X s c l = 1 0 , ~} \Delta \mathbf{Y}=\mathbf{1}, \mathrm{Y}$ scl=10.	8:ZInteger

ZInterval

ZIntervalo[,listname,freqlist,confidence level $]$	+ STAT
(Data list input)	TESTS
Computes a z confidence interval.	7:ZInterval

ZInterval	
$\left.\begin{array}{lr}\text { ZInterval } \sigma, \bar{x}, n[, \text { confidence level] } & \text { †STAT } \\ \text { (Summary stats input) } & \text { TESTS } \\ \text { Computes a } z \text { confidence interval. } & \text { 7:ZInterval }\end{array}\right]$	

Zoom In	
Zoom In	+ ZOOM
Magnifies the part of the graph that surrounds the cursor location.	ZOOM
Magnies the part of graph that surrunds the cursorlocation.	2:Zoom In

Zoom Out	+ ZOOM
Zoom Out	ZOOM
Displays a greater portion of the graph, centered on the cursor location.	3:Zoom Out

ZoomFit	† ZOOM
ZoomFit	ZOOM
Recalculates Ymin and Ymax to include the minimum and maximum Y	$\mathbf{0 : Z o o m F i t}$
values, between Xmin and Xmax, of the selected functions and replots	

ZoomRcl	
ZoomRcl	†ZOOM
Graphs the selected functions in a user-defined viewing window.	MEMORY
	3:ZoomRcl

ZoomStat

ZoomStat
Redefines the viewing window so that all statistical data points are displayed.

ZoomSto
ZoomSto

+ ZOOM
Immediately stores the current viewing window.
MEMORY
2:ZoomSto

ZPrevious

ZPrevious

+ ZOOM
Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.

ZQuadrant1

ZQuadrant1
ZOOM
Displays the portion of the graph that is in quadrant 1.
ZOOM
A:ZQuadrant1

ZSquare	+ ZOOM
ZSquare	ZOOM
Adjusts the X or \mathbf{Y} window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window.	$5: Z S q u a r e$

ZStandard	
ZStandard	†ZOOM Replots the functions immediately, updating the window variables to the default values.
6:ZStandard	

Z-Test(
Z-Test($\mu 0, \sigma$	† STATT
[,listname,freqlist,alternative,drawflag,color\#])	TESTS
(Data list input)	1:Z-Test(
Performs a z test with frequency freqlist.alternative $=-1$ is $<;$	

Z-Test(

alternative $=\mathbf{0}$ is ; alternative $=\mathbf{1}$ is $>$. drawflag=1 draws results;
drawflag=0 calculates results.
Color\#: 10-24 or color name pasted from [vars] COLOR.

Z-Test(

Z-Test $(\mu 0, \sigma, \overline{\mathrm{x}}, n[$, alternative,drawflag, color\# $\#)$	世 STAT
(Summary stats input)	TESTS
Performs a z test. alternative $=-1$ is <; alternative $=0$ is ;	1:Z-Test(

Performs a z test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is ; 1:Z-Test(
alternative $=\mathbf{1}$ is $>$.drawflag=1 draws results; drawflag=0 calculates results.

Color\#: 10-24 or color name pasted from [vars] COLOR.

ZTrig	† ZOOM
ZTrig	ZOOM
Replots the functions immediately, updating the window variables to preset values for plotting trig functions.	7:ZTrig

Arithmetic Operations, Test Relations, and Symbols

! (factorial)	
Factorial: value [MATH	
Returns factorial of value.	PRB
	$4:!$

! (factorial)

Factorial: list ! MATH
Returns factorial of list elements. PRB
4:!

${ }^{\circ}$ (degrees notation)

Degrees notation: value ${ }^{\circ}$
Interprets value as degrees; designates degrees in DMS format.
${ }^{r}$ (radian)
Radian: angle ${ }^{\mathbf{r}}$
2nd [ANGLE]
ANGLE
Interprets angle as radians.
3: ${ }^{\text {r }}$

T (transpose)

Transpose: matrix ${ }^{\mathbf{\top}}$
Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of 2: ${ }^{\top}$ matrix.

$x_{\sqrt{ }}$	
$x^{\text {th }}$ root ${ }^{\mathbf{x}} \sqrt{\text { value }}$	MATH
Returns $x^{\text {th }}$ root of value.	$\overline{\text { MATH }}$

$$
\begin{aligned}
& \mathbf{x} \sqrt{(} \\
& x^{\text {th }} \text { root } \sqrt{\text { x }} \sqrt{\text { list }}
\end{aligned}
$$

$x_{\sqrt{1}}$

list $^{\mathbf{x}} \sqrt{\text { value }}$
Returns list roots of value.

$x_{\sqrt{1}}$

list $A \sqrt{\mathbf{x}} \sqrt{\text { list }}$ B
Returns listA roots of listB.

3 (cube)

Cube: value ${ }^{3}$
MATH
Returns the cube of a real or complex number, expression, list, or square matrix.

MATH
3: ${ }^{3}$

$\sqrt[3]{(}$ (cube root)

Cube root: $\sqrt[3]{(\text { value })}$
Returns the cube root of a real or complex number, expression, or list.

Returns 1 if value $=$ valueB. Returns 0 if value A value B. value A and valueB can be real or complex numbers, expressions, lists, or matrices.

```
# (not equal)
```

Not equal:
value $A \neq$ value B
Returns 1 if value $A \neq v a l u e B$. Returns 0 if value $A=v a l u e B$. expressions, lists, or matrices.

< (less than)

Less than:
value $A<$ value B
Returns 1 if value A valueB. Returns 0 if value $A \geq$ value B.

$>$ (greater than)

Greater than:	2nd [TEST]
value $A>$ value B	TEST

Returns 1 if value \gg valueB. Returns 0 if value $A \leq v a l u e B$.

Returns 1 if value $A \leq$ valueB. Returns 0 if value \gg value B. value A and value B can be real or complex numbers, expressions, or lists.

\geq (greater or equal)

Greater than or equal:
value $A \geq$ value B
Returns 1 if value $A \geq$ value B. Returns 0 if value A value B. value A and value B can be real or complex numbers, expressions, or lists.

```
-1 (inverse)
Inverse: value-1
    x-1
Returns 1 divided by a real or complex number or expression.
```


-1 (inverse)

Inverse: list $^{-1}$
Returns 1 divided by list elements.

${ }^{-1}$ (inverse)

Inverse: matrix $^{-1}$
Returns matrix inverted.

2 (square)

Square: value ${ }^{\mathbf{2}}$
Returns value multiplied by itself. value can be a real or complex number or expression.

2 (square)

Square: list $^{\mathbf{2}}$

Returns list elements squared.

2 (square)

Square: matrix $^{\mathbf{2}}$
Returns matrix multiplied by itself.
\wedge (power)
Powers: value^power

Returns value raised to power. value can be a real or complex number or expression.
\wedge (power)
Powers: list^power
Returns list elements raised to power.

Returns value raised to list elements.
\wedge (power)
Powers: matrix^ ${ }^{\wedge}$ power

Powers: matrix^power
Returns matrix elements raised to power.

```
- (negation)
```

Negation: -value (-)]

Returns the negative of a real or complex number, expression, list, or matrix.

10^((power of ten)

Power of ten: 10^(value)
Returns 10 raised to the value power. value can be a real or complex number or expression.

$\mathbf{1 0}^{\wedge}$ ((power of ten)

Power of ten: $\mathbf{1 0}^{\wedge}$ (list)
2nd [10^{x}]
Returns a list of 10 raised to the list

$\sqrt{ }$ (square root)

Square root: $\sqrt{(\text { value })}$
2nd [v]
Returns square root of a real or complex number, expression, or list.

* (multiply)

Multiplication:

Returns value A times valueB.

* (multiply)

Multiplication:

```
* (multiply)
value*list
```

Returns value times each list element．

* (multiply)

Multiplication:

区

list*value

Returns each list element times value.

* (multiply)
Multiplication:
区
list $A *$ list B

Returns list A elements times list B elements．

＊（multiply）

Multiplication：
value＊matrix
Returns value times matrix elements．

＊（multiply）

Multiplication：
matrix $A *$ matrix B
Returns matrixA times matrixB．
／（divide）
Division：valueA／valueB

Division：value $/$／value B
Returns value A divided by valueB
／（divide）
Division： list／value

Returns list elements divided by value．
／（divide）
Division：value／list

(divide)

Returns value divided by list elements.

(divide)

Division: listA/listB
\div
Returns list A elements divided by list B elements.

```
+ (add)
```

Addition: value $A+v a l u e B$
\dagger
Returns value A plus valueB.

+ (add)

Addition: list + value
\oplus
Returns list in which value is added to each list element.

+ (add)

Addition: list $A+$ list B
\pm

Returns list A elements plus list B elements.

```
+ (add)
```


Addition:

matrix $A+$ matrix B
Returns matrix A elements plus matrix B elements.

```
+ (concatenation)
```


Concatenation:

$+$
string1+string2
Concatenates two or more strings.

- (subtract)

Subtraction:
value A-valueB
Subtracts valueB from value A.

```
- (subtract)
Subtraction:
value-list
```

Subtracts list elements from value

- (subtract)

Subtraction:
list-value
Subtracts value from list elements.

- (subtract)
Subtraction:
list A-list B
Subtracts list B elements from list A elements.
- (subtract)

Subtraction:
matrixA-matrix B
Subtracts matrix B elements from matrix A elements.

' (minutes notation)

Minutes notation:degrees ${ }^{\circ}$ minutes'	2nd [ANGLE]
seconds"	ANGLE
Interprets minutes angle measurement as minutes.	$\mathbf{2 : '}$

" (seconds notation)

Seconds notation:
ALPHA ['I] degrees ${ }^{\circ}$ minutes'seconds"

Interprets seconds angle measurement as seconds.

Error Messages

When the TI-84 Plus CE detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DOMAIN. This table contains each error type, possible causes, and suggestions for correction. The error types listed in this table are each preceded by ERR: on your graphing calculator display. For example, you will see ERR:ARCHIVED as a menu title when your graphing calculator detects an ARCHIVED error type.

ERROR TYPE	Possible Causes and Suggested Remedies
ARCHIVED	You have attempted to use, edit, or delete an archived variable. For example, the expression dim(L1) produces an error if L1 is archived.
ARCHIVE	You have attempted to archive a variable and there is not enough space in archive to receive it.
FULL	A function or instruction does not have the correct number of arguments. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example, stdDev(list [freqlist]) might be entered as stdDev(L1) or stdDev(L1,L2) since the frequency list or freqlist is optional.
BAD	You have attempted to send or receive an application and an error ((e.g. electrical interference) has occurred in the transmission.
ADDRESS	

ERROR TYPE	Possible Causes and Suggested Remedies
	required.
	In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor.
	You attempted to store an incorrect data type, such as a matrix, to a list.
	You attempted to enter complex numbers into the n / d MathPrint ${ }^{\text {TM }}$ template.
DIMENSION MISMATCH	Your calculator displays the ERR:DIMENSION MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying L1*L2, where L1= $\{1,2,3,4,5\}$ and $\mathrm{L} 2=\{1,2\}$ produces an ERR:DIMENSION MISMATCH error because the number of elements in L1 and L2 do not match.
	You may need to turn Plots Off to continue.
DIVIDE BY 0	You attempted to divide by zero. This error is not returned during graphing. The TI-84 Plus CE allows for undefined values on a graph. - You attempted a linear regression with a vertical line.
DOMAIN	You specified an argument to a function or instruction outside the valid range. The TI-84 Plus CE allows for undefined values on a graph.
	You attempted a logarithmic or power regression with a $-\mathbf{X}$ or an exponential or power regression with a $-\mathbf{Y}$.
	You attempted to compute $\Sigma \operatorname{Prn}$ (or $\Sigma \operatorname{Int}($ with pmt 2 <pmt 1 .
DUPLICATE	You attempted to create a duplicate group name.
Duplicate Name	A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit.
EXPIRED	You have attempted to run an application with a limited trial period which has expired.
Error in Xmit	The TI-84 Plus CE was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode.
	You pressed $0 \times$ to break during transmission.
	Setup RECEIVE first and then SEND, when sending files ([LINK]) between graphing calculators.
ID NOT FOUND	This error occurs when the SendID command is executed but the proper graphing calculator ID cannot be found.
ILLEGAL	You attempted to use an invalid function in an argument to

ERROR TYPE	Possible Causes and Suggested Remedies
NEST	a function, such as seq(within expression for seq(.
INCREMENT	The increment, step, in seq(is 0 or has the wrong sign. . The TI-84 Plus CE allows for undefined values on a graph. The increment in a For (loop is 0.
INVALID	You attempted to reference a variable or use a function where it is not valid. For example, $\mathbf{Y} n$ cannot reference \mathbf{Y}, Xmin, ΔX, or TblStart.
	In Seq mode, you attempted to graph a phase plot without defining both equations of the phase plot.
	In Seq mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.
	In Seq mode, you attempted to reference terms other than $(n-1)$ or ($n-2$).
	You attempted to designate a graph style that is invalid within the current graph mode.
	You attempted to use Select(without having selected (turned on) at least one xyLine or scatter plot.
INVALID DIMENSION	The ERR:INVALID DIMENSION error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press 2nd [STAT PLOT] and then select 4:PlotsOff.
	You specified a list dimension as something other than an integer between 1 and 999.
	You specified a matrix dimension as something other than an integer between 1 and 99.
	You attempted to invert a matrix that is not square.
ITERATIONS	The solve(function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both.
	irr(has exceeded the maximum number of permitted iterations.
	When computing I\%, the maximum number of iterations was exceeded.
LABEL	The label in the Goto instruction is not defined with a Lbl instruction in the program.
LINK L1 (or any other file) to Restore	The calculator has been disabled for testing. To restore full functionality, use TI Connect ${ }^{\text {TM }}$ CE software to download a file to your calculator from your computer, or transfer any file to your calculator from another TI-84 Plus CE.

ERROR TYPE	Possible Causes and Suggested Remedies
MEMORY	Memory is insufficient to perform the instruction or function. You must delete items from memory before executing the instruction or function. Recursive problems return this error; for example, graphing the equation Y1=Y1.
	Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached.
	Attempting to create a matrix with larger than 400 cells. You are unable to transmit an item because the receiving
MemoryFull	Ynit's available memory is insufficient. You may skip the item or exit receive mode.
	During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes
the sending unit must delete to do the memory backup.	
Delete items and try again.	

ERROR TYPE	Possible Causes and Suggested Remedies
SINGULARITY	expression in the solve(function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both.
	You attempted a stat calculation with lists that are not appropriate.
Statistical analyses must have at least two data points.	

ERROR TYPE	Possible Causes and Suggested Remedies
	OS. TI-84 Plus CE and TI-84 Plus share programs but a version error will be given if any new $\mathrm{TI}-84$ Plus CE programs may need to be adjusted for the high resolution graph area.
WINDOW RANGE	A problem exists with the window variables.
	You defined Xmax Xmin or Ymax Ymin.
	You defined θ max θ min and θ step > 0 (or vice versa).
	You attempted to define Tstep=0.
	You defined Tmax Tmin and Tstep > 0 (or vice versa).
	Window variables are too small or too large to graph correctly. You may have attempted to zoom to a point that exceeds the TI-84 Plus CE's numerical range.
ZOOM	A point or a line, instead of a box, is defined in ZBox.
	A ZOOM operation returned a math error.

General Information

Texas Instruments Support and Service

General Information: North and South America

Home Page:	$\frac{\text { education.ti.com }}{\text { education.ti.com/support }}$
KnowledgeBase and e-mail inquiries:	$\frac{\text { ed }}{(800) \text { TI-CARES } /(800) \text { 842-2737 }}$
Phone:	For North and South America and U.S. Interritories
	education.ti.com/support/worldwide

For Technical Support
Knowledge Base and support by e-mail: $\quad \frac{\text { education.ti.com/support }}{}$ or
Phone (not toll-free):

For Product (Hardware) Service
Customers in the U.S., Canada, Mexico, and U.S. territories: Always contact Texas Instruments Customer Support before returning a product for service.

For All Other Countries:

For general information
For more information about TI products and services, contact TI by e-mail or visit the TI Internet address.

E-mail inquiries:	ti-cares@ti.com
Home Page:	education.ti.com

Service and Warranty Information

For information about the length and terms of the warranty or about product service, refer to the warranty statement enclosed with this product or contact your local Texas Instruments retailer/distributor.

[^0]: Computes a two-sample z confidence interval.

